173 resultados para spatial dispersion
Resumo:
In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 sq.km. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, ordinary kriging and Support Vector Machine (SVM) models have been developed. In ordinary kriging, the knowledge of the semivariogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of Bangalore, where field measurements are not available. A cross validation (Q1 and Q2) analysis is also done for the developed ordinary kriging model. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing e-insensitive loss function has been used to predict the reduced level of rock from a large set of data. A comparison between ordinary kriging and SVM model demonstrates that the SVM is superior to ordinary kriging in predicting rock depth.
Resumo:
In this paper we report a modeling technique and analysis of wave dispersion in a cellular composite laminate with spatially modulated microstructure, which can be modeled by parameterization and homogenization in an appropriate length scale. Higher order beam theory is applied and the system of wave equations are derived. Homogenization of these equations are carried out in the scale of wavelength and frequency of the individual wave modes. Smaller scale scattering below the order of cell size are filtered out in the present approach. The longitudinal dispersion relations for different values of a modulation parameter are analyzed which indicates the existence of stop and pass band patterns. Dispersion relations for flexural-shear case are also analyzed which indicates a tendency toward forming the stop and pass bands for increasing values of a shear stiffness modulation parameter. The effect the phase angle (θ) of the incident wave indicates the existence more number of alternative stop bands and pass bands for θ = 45°.
Resumo:
Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.
Resumo:
Lentic ecosystems vital functions such as recycling of nutrients, purification of water, recharge of groundwater,augmenting and maintenance of stream flow and habitat provision for a wide variety of flora and fauna along with their recreation values necessitates their sustainable management through appropriate conservation mechanisms. Failure to restore these ecosystems will result in extinction of species or ecosystem types and cause permanent ecological damage. In Bangalore, lentic ecosystems (for example lakes) have played a prominent role serving the needs of agriculture and drinking water. But the burgeoning population accompanied by unplanned developmental activities has led to the drastic reduction in their numbers (from 262 in 1976 to 81). The existing water bodies are contaminated by residential, agricultural, commercial and industrial wastes/effluents. In order to restore the ecosystem, assessment of the level of contamination is crucial. This paper focuses on characterisation and restoration aspects of Varthur lake based on hydrological, morphometric, physical-chemical and socio-economic investigations for a period of six months covering post monsoon seasons. The results of the water quality analysis show that the lake is eutrophic with high concentrations of phosphorous and organic matter. The morphometric analysis indicates that the lake is shallow in relation to its surface area. Socio-economic analyses show dependence of local residents for irrigation, fodder, etc. These analyses highlight the need and urgency to restore the physical, chemical and biological integrity through viable restoration and sustainable watershed management strategies, which include pollution abatement, catchment treatment, desilting of the lake and educating all stakeholders on the conservation and restoration of lake ecosystems.
Resumo:
Social, economic and political development of a region is dependent on the health and quantity of the natural resources. Integrated approaches in the management of natural resources would ensure sustainability, which demands inventorying, mapping and monitoring of resources considering all components of an ecosystem. The monitoring of hydrological and catchment landscape of river resources have a vital role in the conservation and management of aquatic resources. This paper presents a case study Venkatapura river basin in Uttara Kannada district of Karnataka State, India based on stream hydrology and landuse analyses. The results revealed variations in dissolved oxygen and free carbon dioxide according to the flow nature of the water, and increased amount of phosphates and coliform contamination in streams closer to anthropogenic activities.
Resumo:
Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an opportunity to monitor the changes, which is important for natural resource management and sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-polarization remote sensing data with efficient classification algorithms and pattern recognition techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, edge, transitional, patch and undetermined. Based on this, urban growth model was developed to determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising urban growth poles and consequence of earlier policy decisions that can help in evolving strategies for effective land use policies.
Resumo:
We consider a dense ad hoc wireless network comprising n nodes confined to a given two dimensional region of fixed area. For the Gupta-Kumar random traffic model and a realistic interference and path loss model (i.e., the channel power gains are bounded above, and are bounded below by a strictly positive number), we study the scaling of the aggregate end-to-end throughput with respect to the network average power constraint, P macr, and the number of nodes, n. The network power constraint P macr is related to the per node power constraint, P macr, as P macr = np. For large P, we show that the throughput saturates as Theta(log(P macr)), irrespective of the number of nodes in the network. For moderate P, which can accommodate spatial reuse to improve end-to-end throughput, we observe that the amount of spatial reuse feasible in the network is limited by the diameter of the network. In fact, we observe that the end-to-end path loss in the network and the amount of spatial reuse feasible in the network are inversely proportional. This puts a restriction on the gains achievable using the cooperative communication techniques studied in and, as these rely on direct long distance communication over the network.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.