136 resultados para space-time stereo
Resumo:
A new fiber bundle approach to the gauge theory of a group G that involves space‐time symmetries as well as internal symmetries is presented. The ungauged group G is regarded as the group of left translations on a fiber bundle G(G/H,H), where H is a closed subgroup and G/H is space‐time. The Yang–Mills potential is the pullback of the Maurer–Cartan form and the Yang–Mills fields are zero. More general diffeomorphisms on the bundle space are then identified as the appropriate gauged generalizations of the left translations, and the Yang–Mills potential is identified as the pullback of the dual of a certain kind of vielbein on the group manifold. The Yang–Mills fields include a torsion on space‐time.
Resumo:
The Witten index can be defined in many supersymmetric theories by formulating them in the space-time R×S3. If the index is nonzero for any value of the radius of S3, it can be shown that the theory does not break supersymmetry in Minkowski space. This approach rules out supersymmetry breaking in a large class of models, chiral and otherwise. The index arguments are consistent with previous instanton calculations which indicate supersymmetry breaking in certain theories.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
Constellation Constrained (CC) capacity regions of two-user Single-Input Single-Output (SISO) Gaussian Multiple Access Channels (GMAC) are computed for several Non-Orthogonal Multiple Access schemes (NO-MA) and Orthogonal Multiple Access schemes (O-MA). For NO-MA schemes, a metric is proposed to compute the angle(s) of rotation between the input constellations such that the CC capacity regions are maximally enlarged. Further, code pairs based on Trellis Coded Modulation (TCM) are designed with PSK constellation pairs and PAM constellation pairs such that any rate pair within the CC capacity region can be approached. Such a NO-MA scheme which employs CC capacity approaching trellis codes is referred to as Trellis Coded Multiple Access (TCMA). Then, CC capacity regions of O-MA schemes such as Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) are also computed and it is shown that, unlike the Gaussian distributed continuous constellations case, the CC capacity regions with FDMA are strictly contained inside the CC capacity regions with TCMA. Hence, for finite constellations, a NO-MA scheme such as TCMA is better than FDMA and TDMA which makes NO-MA schemes worth pursuing in practice for two-user GMAC. Then, the idea of introducing rotations between the input constellations is used to construct Space-Time Block Code (STBC) pairs for two-user Multiple-Input Single-Output (MISO) fading MAC. The proposed STBCs are shown to have reduced Maximum Likelihood (ML) decoding complexity and information-losslessness property. Finally, STBC pairs with reduced sphere decoding complexity are proposed for two-user Multiple-Input Multiple-Output (MIMO) fading MAC.
Resumo:
A new theory of gravitation has been proposed in a more general space-time than Riemannian. It is a generalization of the ECSK and Brans-Dicke (BD) theory of gravitation. It is found that, in contrast to the standard the ECSK theory, a parity-violating propagating torsion is generated by the BD scalar field. The interesting consequence of the theory is that it can successfully predict solar system experimental results to desired accuracy.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.
Resumo:
Distributed Space-Time Block Codes (DSTBCs) from Complex Orthogonal Designs (CODs) (both square and non-square CODs other than the Alamouti design) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using the amplify and forward protocol. For such a network, a new class of high rate, training-symbol embedded (TSE) SSD DSTBCs are proposed from TSE-CODs. The constructed codes include the training symbols within the structure of the code which is shown to be the key point to obtain high rate along with the SSD property. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations. Non-square TSE-CODs are shown to provide better rates (in symbols per channel use) compared to the known SSD DSTBCs for relay networks when the number of relays is less than 10. Importantly, the proposed DSTBCs do not contain zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on and off transitions within every codeword use. Hence, the proposed DSTBCs eliminate the antenna switching problem.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
For the number of transmit antennas N = 2(a) the maximum rate (in complex symbols per channel use) of all the Quasi-Orthogonal Designs (QODs) reported in the literature is a/2(a)-1. In this paper, we report double-symbol-decodable Space-Time Block Codes with rate a-1/2(a)-2 for N = 2(a) transmit antennas. In particular, our code for 8 and 16 transmit antennas offer rates 1 and 3/4 respectively, the known QODs offer only 3/4 and 1/2 respectively. Our construction is based on the representations of Clifford algebras and applicable for any number of transmit antennas. We study the diversity sum and diversity product of our codes. We show that our diversity sum is larger than that of all known QODs and hence our codes perform better than the comparable QODs at low SNRs for identical spectral efficiency. We provide simulation results for various spectral efficiencies.
Resumo:
Context. Polar corona is often explored to find the energy source for the acceleration of the fast solar wind. Earlier observations show omni-presence of quasi-periodic disturbances, traveling outward, which is believed to be caused by the ubiquitous presence of outward propagating waves. These waves, mostly of compressional type, might provide the additional momentum and heat required for the fast solar wind acceleration. It has been conjectured that these disturbances are not due to waves but high speed plasma outflows, which are difficult to distinguish using the current available techniques. Aims. With the unprecedented high spatial and temporal resolution of AIA/SDO, we search for these quasi-periodic disturbances in both plume and interplume regions of the polar corona. We investigate their nature of propagation and search for a plausible interpretation. We also aim to study their multi-thermal nature by using three different coronal passbands of AIA. Methods. We chose several clean plume and interplume structures and studied the time evolution of specific channels by making artificial slits along them. Taking the average across the slits, space-time maps are constructed and then filtration techniques are applied to amplify the low-amplitude oscillations. To suppress the effect of fainter jets, we chose wider slits than usual. Results. In almost all the locations chosen, in both plume and interplume regions we find the presence of propagating quasi-periodic disturbances, of periodicities ranging from 10-30 min. These are clearly seen in two channels and in a few cases out to very large distances (approximate to 250 `') off-limb, almost to the edge of the AIA field of view. The propagation speeds are in the range of 100-170 km s(-1). The average speeds are different for different passbands and higher in interplume regions. Conclusions. Propagating disturbances are observed, even after removing the effects of jets and are insensitive to changes in slit width. This indicates that a coherent mechanism is involved. In addition, the observed propagation speed varies between the different passpands, implying that these quasi-periodic intensity disturbances are possibly due to magneto-acoustic waves. The propagation speeds in interplume region are higher than in the plume region.
Resumo:
Within the summer monsoon, the circulation and rainfall over the Indian region exhibit large variations over the synoptic scale of 3-7 days and the supersynoptic scales of 10 days and longer. In this paper we discuss some facets of intraseasonal variation on the supersynoptic scale on the basis of existing observational studies and some new analysis. The major variation of the summer monsoon rainfall on this scale is the active-break cycle. The deep convection over the Indian region on a typical day in the active phase is organized over thousands of kilometers in the zonal direction and is associated with a tropical convergence zone (TCZ). The intraseasonal variations on the supersynoptic scale are also coherent on these scales and are related to the space-time variation of the large-scale TCZ. The latitudinal distribution of the occurrence of the TCZ is bimodal with the primary mode over the heated continent and a secondary mode over the ocean. The variation of the continental TCZ is generally out of phase with that of the oceanic TCZ. During the active spells, the TCZ persists over the continent in the monsoon zone. The revival from breaks occurs either by northward propagation of the TCZ over the equatorial Indian Ocean or by genesis of a disturbance in the monsoon zone (often as a result of westward propagations from W. Pacific). The mechanisms governing the fluctuation between active spells and breaks, the interphase transition and the complex interactions of the TCZ over the Indian subcontinent with the TCZ over the equatorial Indian Ocean and the W. Pacific, have yet to be completely understood.
Resumo:
Recently, a special class of complex designs called Training-Embedded Complex Orthogonal Designs (TE-CODs) has been introduced to construct single-symbol Maximum Likelihood decodable (SSD) distributed space-time block codes (DSTBCs) for two-hop wireless relay networks using the amplify and forward protocol. However, to implement DSTBCs from square TE-CODs, the overhead due to the transmission of training symbols becomes prohibitively large as the number of relays increase. In this paper, we propose TE-Coordinate Interleaved Orthogonal Designs (TE-CIODs) to construct SSD DSTBCs. Exploiting the block diagonal structure of TE-CIODs, we show that the overhead due to the transmission of training symbols to implement DSTBCs from TE-CIODs is smaller than that for TE-CODs. We also show that DSTBCs from TE-CIODs offer higher rate than those from TE-CODs for identical number of relays while maintaining the SSD and full-diversity properties.
Resumo:
This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes.
Resumo:
Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.
Resumo:
Some basic results that help in determining the Diversity-Multiplexing Tradeoff (DMT) of cooperative multihop networks are first identified. As examples, the maximum achievable diversity gain is shown to equal the min-cut between source and sink, whereas the maximal multiplexing gain is shown to equal the minimum rank of the matrix characterizing the MIMO channel appearing across a cut in the network. Two multi-hop generalizations of the two-hop network are then considered, namely layered networks as well as a class of networks introduced here and termed as K-parallel-path (KPP) networks. The DMT of KPP networks is characterized for K > 3. It is shown that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for fully-connected, layered networks. Explicit coding schemes achieving the DMT that make use of cyclic-division-algebra-based distributed space-time codes underlie the above results. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple, amplify-and-forward protocols are often sufficient to attain the optimal DMT.