92 resultados para silver hoard
Resumo:
A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as lm-n-lm], 2Br(-) (n = 2, 5, 6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units -(CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as Im-n-Im], 2Br(-) (n = 2, 5,6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units (CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We report the electrical transport properties of silver-, potassium-, and magnesium-doped hydroxyapatites (HAs). While Ag+ or K+ doping to HA enhances the conductivity, Mg+2 doping lowers the conductivity when compared with undoped HA. The mechanism behind the observed differences in ionic conductivity has been discussed using the analysis of high-temperature frequency-dependent conductivity data, Cole-Cole plots of impedance data as well as on the basis of the frequency dependence of the imaginary part (M) of the complex electric modulus. The f(max) of modulus M decreased in silver- and potassium-doped samples in comparison with the undoped HA.
Resumo:
A silver ion (Ag+)-triggered thixotropic metallo(organo)gel of p-pyridyl-appended oligo(p-phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single-walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by pi-pi interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH-doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased step- wise in the order: freshly prepared gel
Resumo:
In this work, porous membranes were designed by selectively etching the PEO phase, by water, from a melt-mixed PE/PEO blend. The pure water flux and the resistance across the membrane were systematically evaluated by employing an indigenously developed cross flow membrane setup. Both the phase morphology and the cross sectional morphology of the membranes was assessed by scanning electron microscopy and an attempt was made to correlate the observed morphology with the membrane performance. In order to design antibacterial membranes for water purification, partially reduced graphene oxide (rGO), silver nanoparticles (Ag) and silver nanoparticles decorated with rGO (rGO-Ag) were synthesized and incorporated directly into the blends during melt mixing. The loss of viability of bacterial cells was determined by the colony counting method using E. coli as a model bacterium. SEM images display that the direct contact with the rGO-Ag nanoparticles disrupts the cell membrane. In addition, the rGO-Ag nanoparticles exhibited a synergistic effect with respect to bacterial cell viability in comparison to both rGO and Ag nanoparticles. The possible mechanism associated with the antibacterial activity in the membranes was discussed. This study opens new avenues in designing antibacterial membranes for water purification.
Resumo:
In this paper, we report the compositional variation-dependent phase stability of hydroxyapatite (Ca-10(PO4)(6)(OH)(2)) on doping with silver. The transformation of hydroxyapatite to (beta/alpha) tricalcium phosphate phases during sintering has been explored using Raman spectroscopy and X-ray diffraction techniques. The optical absorption spectroscopy analysis reveals the presence of Ag+ ions at low doping levels. As the doping increases, abundance of Ag particles is enhanced.
Resumo:
Silver nanoparticles (AgNPs) find use in different biomedical applications including wound healing and cancer. We propose that the efficacy of the nanoparticles can be further augmented by using these particles for gene delivery applications. The objective of this work was to engineer biofunctionalized stable AgNPs with good DNA binding ability for efficient transfection and minimal toxicity. Herein, we report on the one-pot facile green synthesis of polyethylene glycol (PEG) stabilized chitosan-g-polyacrylamide modified AgNPs. The size of the PEG stabilized AgNPs was 38 +/- 4 nm with a tighter size distribution compared to the unstabilized nanoparticles which showed bimodal distribution of particle sizes of 68 +/- 5 nm and 7 +/- 4 nm. To enhance the efficiency of gene transfection, the Arg-Gly-Asp-Ser (RGDS) peptide was immobilized on the silver nanoparticles. The transfection efficiency of AgNPs increased significantly after immobilization of the RGDS peptide reaching up to 42 +/- 4% and 30 +/- 3% in HeLa and A549 cells, respectively, and significantly higher than 34 +/- 3% and 23 +/- 2%, respectively, with the use of polyethyleneimine (25 kDa). These nanoparticles were found to induce minimal cellular toxicity. Differences in cellular uptake mechanisms with RGDS immobilization resulting in improved efficiency are elucidated. This study presents biofunctionalized AgNPs for potential use as efficient nonviral carriers for gene delivery with minimal cytotoxicity toward augmenting the therapeutic efficacy of AgNPs used in different biomedical products.
Resumo:
In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s(-1) implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 mu M and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems.
Resumo:
A novel and highly sensitive sensing strategy for the detection of organophosphorus compounds (OPs) based on the catalytic reaction of acetylcholinesterase (AChE) and acetylcholine (ATCh) during the modulated synthesis of silver nanoparticles (AgNPs) has been developed. The enzymatic hydrolysis of ATCh by AChE yields thiocholine (TCh), which induces the aggregation of AgNPs during synthesis, and the absorption peak at 382 nm corresponding to AgNPs decreases. The enzymatic reaction can be regulated by OPs, which can covalently bind to the active site of AChE and decrease the TCh formation, thereby decreasing the aggregation and significantly enhancing the absorption peak at 382 nm. The proposed system achieved good linearity and limits of detection of 0.078 nM and 2.402 nM for trichlorfon and malathion, respectively, by UV-visible spectroscopy. Further, the sensitivity of the proposed system was demonstrated through the determination of OPs in different spiked real samples. The described work shows the potential application for further development of a colorimetric sensor for other OP pesticide detection during the synthesis of AgNPs using enzyme-based assays.
Resumo:
Fabricating supramolecular hydrogels with embedded metal nanostructures is important for the design of novel hybrid nanocomposite materials for diverse applications such as biosensing and chemosensing platforms, catalytic and antibacterial functional materials etc. Supramolecular self-assembly of bile acid-dipeptide conjugates has led to the formation of new supramolecular hydrogels. Gelation of these molecules depends strongly on the hydrophobic character of the bile acids. The possibility of in situ fabrication of Ag and Au NPs in these supramolecular hydrogels by incorporating Ag+ and Au3+ salts was investigated via photoreduction. Chemical reductions of Ag+ and Au3+ salts in the hydrogels were performed without adding any external stabilizing agents. In this report we have shown that the color, size and shape of silver nanoparticles formed by photoreduction depend on the amino acid residue of the side chain.
Resumo:
A single step process for the synthesis of size-controlled silver nanoparticles has been developed using a bifunctional molecule, octadecylamine (ODA). Octadecylamine complexes to Ag+ ions electrostatically, reduce them, and subsequently stabilizes the nanoparticles thus formed. Hence, octadecylamine simultaneously functions as both a reducing and a stabilizing agent. The amine-capped nanoparticles can be obtained in the form of dry powder, which is readily redispersible in aqueous and organic solvents. The particle size, and the nucleation and growth kinetics of silver nanoparticles could be tuned by varying the molar ratio of ODA to AgNO3. The UV-vis spectra of nanoparticles prepared with different concentrations of ODA displayed the well-defined plasmon band with maximum absorption around 425 nm. The formation of silver metallic nanoparticles was confirmed by their XRD pattern. The binding of ODA molecule on the surface of silver has been studied by FT-IR and NMR spectroscopy. The formation of well-dispersed spherical Ag nanoparticles has been confirmed by TEM analysis. The particle size and distribution are found to be dependent on the molar concentration of the amine molecule. Open aperture z-scans have been performed to measure the nonlinearity of Ag nanoparticles. (C) 2015 Published by Elsevier B.V.
Resumo:
Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag-2Fe(CN)(5)NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.
Resumo:
In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.
Resumo:
Nonlinear optical properties (NLO) of a graphene oxide-silver (GO-Ag) nanocomposite have been investigated by the Z-scan setup at Q-switched Nd:YAG laser second harmonic radiation i.e., at 532 nm excitation in a nanosecond regime. A noteworthy enhancement in the NLO properties in the GO-Ag nanocomposite has been reported in comparison with those of the synthesized GO nanosheet. The extracted value of third order nonlinear susceptibility (chi(3)), at a peak intensity of I-0 = 0.2 GW cm(-2), for GO-Ag has been found to be 2.8 times larger than that of GO. The enhancement in NLO properties in the GO-Ag nanocomposite may be attributed to the complex energy band structures formed during the synthesis which promote resonant transition to the conduction band via surface plasmon resonance (SPR) at low laser intensities and excited state transition (ESA) to the conduction band of GO at higher intensities. Along with this photogenerated charge carriers in the conduction band of silver or the increase in defect states during the formation of the GO-Ag nanocomposite may contribute to ESA. Open aperture Z-scan measurement indicates reverse saturable absorption (RSA) behavior of the synthesized nanocomposite which is a clear indication of the optical limiting (OL) ability of the nanocomposite.
Resumo:
In recent years, silver nanoparticles (AgNPs) have attracted considerable interest in the field of food, agriculture and pharmaceuticals mainly due to its antibacterial activity. AgNPs have also been reported to possess toxic behavior. The toxicological behavior of nanomaterials largely depends on its size and shape which ultimately depend on synthetic protocol. A systematic and detailed analysis for size variation of AgNP by thermal co-reduction approach and its efficacy toward microbial and cellular toxicological behavior is presented here. With the focus to explore the size-dependent toxicological variation, two different-sized NPs have been synthesized, i.e., 60 nm (Ag60) and 85 nm (Ag85). A detailed microbial toxicological evaluation has been performed by analyzing minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), diameter of inhibition zone (DIZ), growth kinetics (GrK), and death kinetics (DeK). Comparative cytotoxicological behavior was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It has been concluded by this study that the size of AgNPs can be varied, by varying the concentration of reactants and temperature called as ``thermal co-reduction'' approach, which is one of the suitable approaches to meet the same. Also, the smaller AgNP has shown more microbial and cellular toxicity.