79 resultados para silicone tube
Resumo:
A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran J. Fluid Mech. 705, 322 (2012)]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.
Resumo:
Ignition delay experiments of 3-carene, a biofuel, have been carried out in a single-pulse shock tube for three equivalence ratios, 0.5, 1 and 2. The temperature was varied from 1140 to 1606 K. In the above-mentioned conditions, ignition delay was found to vary from 1.180 ms to 144 mu s. The ignition delay values of 3-carene were found to be lower than those of JP-10, a kerosene-based fuel being considered for hypersonic applications.
Resumo:
Corona is an unavoidable phenomena in high voltage power transmission system, in spite of suitably designed insulator accessories and transmission line hardware. It is a proven fact that the continuous occurrence of corona can subject the polymeric insulator to a severe degradation. Further, moisture in the air has a positive influence on the corona activity. This paper presents the methodology to evaluate the corona performance of the silicone rubber housing material with simultaneous application of cold fog. Analysis conducted after corona treatment by the Fourier Transform Infrared Spectroscopy (FTIR) present an interesting results showing a higher hydroxylation of sample surface under the moisture application than in the normal condition for both AC and DC excitation. FTIR spectrum also indicates the presence of nitric acid on the treated surface with coldfog application. Results obtained from SEM analysis are also presented.
Resumo:
Electromagnetic shielding has become important for various electrical systems because of the electromagnetic pollution caused by the large scale use of electronic devices operating at different frequencies and power levels. Traditionally used metallic shields lack flexibility and hence may not be the right choice for certain applications. In such situations, filled polymer composites provide a good alternative for electromagnetic shielding applications. Being polymer based, they are easy to manufacture and can be molded into the required geometry and shape. In this study, the shielding properties of multiwalled carbon nanotubes and carbon nanofibers filled silicone rubber are studied. The conductivity and the shielding effectiveness of the composites were measured at different filler loadings. Both the fillers are able to make the base polymer conducting even at very low filler loadings. The conductivity and the shielding effectiveness improved when the filler loading was above the percolation threshold.