81 resultados para sensors and actuators
Resumo:
Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.
Resumo:
Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2-containing electron-deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron-rich self-assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several p-electron-rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal-ligand coordination-bonding interactions, with enough internal space to accommodate electron-deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives.
Resumo:
Dynamic effects of plasmon such as scattering with defect boundaries and oxygen impurities in the graphene oxide are investigated. Study of plasmon dynamics helps in understanding electronic, opto-electronic and biological applications of graphene based nanostructures. Tuning or control over such applications is made possible by graphene nanostructure engineering. We have modeled defects with increased smoothing of defect edge in graphene keeping area of the defect constant. Scattering of plasmons in graphene with defects is modeled using an electromagnetic field coupled inter-atomic potential approach with finite element discretization of the atomic vibrational and electromagnetic field degrees of freedom. Our calculations show pi + sigma plasmon red shifting under sharp defect edges whereas pi plasmon show high extinction efficiency. Strong localization of electric fields near the sharp defect edges is observed. Observations on plasmons and its dynamics draws attention in designing novel optoelectronic devices and binders for bio-molecules.
Resumo:
Non-invasive, real-time dynamic monitoring of pressure inside a column with the aid of Fiber Bragg Grating (FBG) sensor is presented in the present work. A bare FBG sensor is adhered on the circumference of a pressure column normal to its axis, which has the ability to acquire the hoop strain induced by the pressure variation inside the column. Pressure induced hoop strain response obtained using FBG sensor is validated against the pressure measurements obtained from conventional pressure gauge. Further, a protrusion setup on the outer surface of the column has been proposed over which a secondary FBG sensor is bonded normal to its axis, in order to increase the gauge length of this FBG sensor. This is carried out in order to validate the variation in sensitivity of the protrusion bonded FBG sensor compared to the bare FBG sensor bonded over the surface. A comparative study is done between the two FBG sensors and a conventional pressure gauge in order to establish the capacity of FBG sensor obtained hoop strain response for pressure monitoring inside the column.
Resumo:
This paper considers decentralized spectrum sensing, i.e., detection of occupancy of the primary users' spectrum by a set of Cognitive Radio (CR) nodes, under a Bayesian set-up. The nodes use energy detection to make their individual decisions, which are combined at a Fusion Center (FC) using the K-out-of-N fusion rule. The channel from the primary transmitter to the CR nodes is assumed to undergo fading, while that from the nodes to the FC is assumed to be error-free. In this scenario, a novel concept termed as the Error Exponent with a Confidence Level (EECL) is introduced to evaluate and compare the performance of different detection schemes. Expressions for the EECL under general fading conditions are derived. As a special case, it is shown that the conventional error exponent both at individual sensors, and at the FC is zero. Further, closed-form lower bounds on the EECL are derived under Rayleigh fading and lognormal shadowing. As an example application, it answers the question of whether to use pilot-signal based narrowband sensing, where the signal undergoes Rayleigh fading, or to sense over the entire bandwidth of a wideband signal, where the signal undergoes lognormal shadowing. Theoretical results are validated using Monte Carlo simulations. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a simple hysteretic method to obtain the energy required to operate the gate-drive, sensors, and other circuits within nonneutral ac switches intended for use in load automated buildings. The proposed method features a switch-mode low part-count self-powered MOSFET ac switch that achieves efficiency and load current THD figures comparable to those of an externally gate-driven switch built using similar MOSFETS. The fundamental operation of the method is explained in detail, followed by the modifications required for practical implementation. Certain design rules that allow the method to accommodate a wide range of single-phase loads from 10 VA to 1 kVA are discussed, along with an efficiency enhancement feature based on inherent MOSFET characteristics. The limitations and side effects of the method are also mentioned according to their levels of severity. Finally, experimental results obtained using a prototype sensor switch are presented, along with a performance comparison of the prototype with an externally gate-driven MOSFET switch.