105 resultados para repeated offences
Resumo:
Type III restriction-modification (R-M) enzymes need to interact with two separate unmethylated DNA sequences in indirectly repeated, head-to-head orientations for efficient cleavage to occur at a defined location next to only one of the two sites. However, cleavage of sites that are not in head-to-head orientation have been observed to occur under certain reaction conditions in vitro. ATP hydrolysis is required for the long-distance communication between the sites prior to cleavage. Type III R-M enzymes comprise two subunits, Res and Mod that form a homodimeric Mod(2) and a heterotetrameric Res(2)Mod(2) complex. The Mod subunit in M-2 or R2M2 complex recognizes and methylates DNA while the Res subunit in R2M2 complex is responsible for ATP hydrolysis, DNA translocation and cleavage. A vast majority of biochemical studies on Type III R-M enzymes have been undertaken using two closely related enzymes, EcoP1I and EcoP15I. Divergent opinions about how the long-distance interaction between the recognition sites exist and at least three mechanistic models based on 1D- diffusion and/or 3D-DNA looping have been proposed.
Resumo:
In developing countries, a high rate of growth in the demand for electric energy is felt, and so the addition of new generating units becomes inevitable. In deregulated power systems, private generating stations are encouraged to add new generations. Some of the factors considered while placing a new generating unit are: availability of esources, ease of transmitting power, distance from the load centre, etc. Finding the most appropriate locations for generation expansion can be done by running repeated power flows and carrying system studies like analyzing the voltage profile, voltage stability, loss analysis, etc. In this paper a new methodology is proposed which will mainly consider the existing network topology. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes. This index is used for ranking the most significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on an EHV equivalent 10-bus system and IEEE 30 bus systems are presented for illustration purposes.
Resumo:
There is a lot of pressure on all the developed and second world countries to produce low emission power and distributed generation (DG) is found to be one of the most viable ways to achieve this. DG generally makes use of renewable energy sources like wind, micro turbines, photovoltaic, etc., which produce power with minimum green house gas emissions. While installing a DG it is important to define its size and optimal location enabling minimum network expansion and line losses. In this paper, a methodology to locate the optimal site for a DG installation, with the objective to minimize the net transmission losses, is presented. The methodology is based on the concept of relative electrical distance (RED) between the DG and the load points. This approach will help to identify the new DG location(s), without the necessity to conduct repeated power flows. To validate this methodology case studies are carried out on a 20 node, 66kV system, a part of Karnataka Transco and results are presented.
Resumo:
We study the dynamics of a spherical steel ball falling freely through a solution of entangled wormlike-micelles. If the sphere diameter is larger than a threshold value, the settling velocity shows repeated short oscillatory bursts separated by long periods of relative quiescence. We propose a model incorporating the interplay of settling-induced flow, viscoelastic stress and, as in M. E. Cates, D. A. Head and A. Ajdari, Phys. Rev. E, 2002, 66, 025202(R) and A. Aradian and M. E. Cates, Phys. Rev. E, 2006, 73, 041508, a slow structural variable for which our experiments offer independent evidence.
Resumo:
Ethnopharmacological relevance: Medicinal plants have played an important role in treating and preventing a variety of diseases throughout the world. Khampti tribal people living in the far-flung Lohit district of the Eastern Arunachal Himalaya, India still depend on medicinal plants and most of them have a general knowledge of medicinal plants which are used for treating a variety of ailments. This survey was undertaken in Lohit district in order to inventory the medicinal plants used in folk medicine to treat diabetes mellitus. Materials and methods: Field investigations were conducted in seventeen remote villages of Lohit district starting from April 2002 to May 2004 through interviews among 251 key informants who were selected randomly during our household survey. To elucidate community domains and determine differences in indigenous traditional knowledge of medicinal plants with anti-diabetic efficacy, we repeated our field survey starting from April 2008 to May 2010 with one hundred traditional healers locally called as ``Chau ya'' in Khampti of Lohit district. ``Chau ya'' traditional healers who know and use medicinal plants for treating diabetes mellitus were interviewed using a semi-structured questionnaire. Results: This study reports an ethnobotanical survey of medicinal plants in Lohit district of Arunachal Pradesh reputed for the treatment of diabetes mellitus. Forty-six plant species were identified in the study area to treat diabetes mellitus by the Khamptis ``Chau ya'' traditional healers. Comparative published literature survey analysis of this study with other ethnobotanical surveys of plants used traditionally in treating diabetes mellitus suggests that eleven plant species make claims of new reports on antidiabetic efficacy. These plant species are Begonia roxburghii, Calamus tenuis, Callicarpa arborea, Cuscuta reflexa, Dillenia indica, Diplazium esculentum, Lectuca gracilis, Millingtonia hortensis, Oxalis griffithii, Saccharum spontaneum, and Solanum viarum. Some of the plants reported in this study have an antidiabetic effect on rodent models but none have sufficient clinical evidence of effectiveness. Conclusions: The wide variety of medicinal plants that are used to treat diabetes mellitus in this area supports the importance of plants in the primary healthcare system of the rural people of Lohit district of Arunachal Pradesh. The finding of new plant uses in the current study reveals the importance of the documentation of such ethnobotanical knowledge. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non-unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal-based reduced-order model of the system. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Metallic and other type of coatings on fiber Bragg grating (FBG) sensors alter their sensitivity with thermal and mechanical stress while protecting the fragile optical fiber in harsh sensing surroundings. The behavior of the coated materials is unique in their response to thermal and mechanical stress depending on the thickness and the mode of coating. The thermal stress during the coating affects the temperature sensitivity of FBG sensors. We have explored the thermal response of FBGs coated with Al and Pb to an average thickness of 80 nm using flash evaporation technique where the FBG sensor is mounted in a region at room temperature in an evacuated chamber having a pressure of 10(6) Torr which will minimize any thermal stress during the coating process. The coating thickness is chosen in the nanometer region with the aim to study thermal behavior of nanocoatings and their effect on FBG sensitivity. The sensitivity of FBGs is evaluated from the wavelengths recorded using an optical sensing interrogator sm 130 (Micron Optics) from room temperature to 300 degrees C both during heating and cooling. It is observed that the sensitivity of the metal coated fibers is better than the reference FBG with no coating for the entire range of temperature. For a coating thickness of 80 nm, Al coated FBG is more sensitive than the one coated with Pb up to 170 degrees C and it reverses at higher temperatures. This point is identified as a reversible phase transition in Pb monolayers as the 2-dimensional aspects of the metal layers are dominant in the nanocoatings of Pb. On cooling, the phase transition reverses and the FBGs return to the original state and for repeated cycles of heating and cooling the same pattern is observed. Thus the FBG functions as a sensor of the phase transitions of the coatings also. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Chemical signaling is a prominent mode of male-female communication among elephants, especially during their sexually active periods. Studies on the Asian elephant in zoos have shown the significance of a urinary pheromone (Z7-12:Ac) in conveying the reproductive status of a female toward the opposite sex. We investigated the additional possibility of an inter-sexual chemical signal being conveyed through dung. Sixteen semi-captive adult male elephants were presented with dung samples of three female elephants in different reproductive phases. Each male was tested in 3 separate trials, within an interval of 1-3 days. The trials followed a double-blind pattern as the male and female elephants used in the trials were strangers, and the observer was not aware of the reproductive status of females during the period of bioassays. Males responded preferentially (P < 0.005), in terms of higher frequency of sniff, check and place behavior toward the dung of females close to pre-ovulatory period (follicular-phase) as compared to those in post-ovulatory period (luteal-phase). The response toward the follicular phase samples declined over repeated trials though was still significantly higher than the corresponding response toward the non-ovulatory phase in each of the trials performed. This is the first study to show that male Asian elephants were able to distinguish the reproductive phase of the female by possibly detecting a pre-ovulatory pheromone released in dung. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Various logical formalisms with the freeze quantifier have been recently considered to model computer systems even though this is a powerful mechanism that often leads to undecidability. In this article, we study a linear-time temporal logic with past-time operators such that the freeze operator is only used to express that some value from an infinite set is repeated in the future or in the past. Such a restriction has been inspired by a recent work on spatio-temporal logics that suggests such a restricted use of the freeze operator. We show decidability of finitary and infinitary satisfiability by reduction into the verification of temporal properties in Petri nets by proposing a symbolic representation of models. This is a quite surprising result in view of the expressive power of the logic since the logic is closed under negation, contains future-time and past-time temporal operators and can express the nonce property and its negation. These ingredients are known to lead to undecidability with a more liberal use of the freeze quantifier. The article also contains developments about the relationships between temporal logics with the freeze operator and counter automata as well as reductions into first-order logics over data words.
Resumo:
In this paper we present a hardware-software hybrid technique for modular multiplication over large binary fields. The technique involves application of Karatsuba-Ofman algorithm for polynomial multiplication and a novel technique for reduction. The proposed reduction technique is based on the popular repeated multiplication technique and Barrett reduction. We propose a new design of a parallel polynomial multiplier that serves as a hardware accelerator for large field multiplications. We show that the proposed reduction technique, accelerated using the modified polynomial multiplier, achieves significantly higher performance compared to a purely software technique and other hybrid techniques. We also show that the hybrid accelerated approach to modular field multiplication is significantly faster than the Montgomery algorithm based integrated multiplication approach.
Resumo:
The present research focused on determining the effect of hydroxyapatite-20 wt% mullite (H20M) particle eluates on apoptosis and differentiation of human fetal osteoblast (hFOB) cells. The H20M particles (257 +/- 37 nm) were prepared, starting with the production of a nanocomposite using a unique route of spark plasma sintering, followed by a repeated grinding-cryo treatment and elution process. Tetrazolium based cytotoxicity assay results showed a time-and dose-dependent effect of H20M particle eluates on hFOB cytotoxicity. In particular, the results revealed statistically reduced cell viability after hFOB were exposed to the above 10% H20M (257 +/- 37 nm) eluates for 48 h. The apoptotic cell death triggered by H20M treatment was proven by the analysis of molecular markers of apoptosis, that is, the Bcl-2 family of genes. hFOB expression of Bcl-xL and Bcl-xS significantly increased 25.6- and 25.2-fold for 50% of H20M concentrations, respectively. The ratio of Bcl-xL/Bax (4.01) decreased 2-fold for hFOB exposed to 100% of H20M eluates than that for 10% H20M eluate (7.94) treated hFOB cells. On the other hand, the Bcl-xS/Bax ratio for the 10% H20M eluate was 4.15-fold, whereas for 100% H20M eluates, it was 11.55-fold. Specifically, the anti-apoptotic effect of the H20M particle eluates was corroborated by the up-regulation of bone cell differentiation marker genes such as, collagen type I, cbfa, and osteocalcin. In summary, the present work clearly demonstrated that H20M submicron to nanometer composite particle eluates have a minimal effect on hFOB apoptosis and can even up-regulate the expression of bone cell markers at the molecular level.
Resumo:
Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.
Resumo:
A comprehensive magnetic study has been carried out on the two sets of La0.5Sr0.5CoO3 samples with a view to understand the origin of low temperature glassiness in the ferromagnetic state. The samples prepared by the conventional solid-state synthesis method show a low temperature shoulder in both dc magnetization as well as in the ac susceptibility measurements, which exhibit characteristics of glassiness such as the frequency dependence and memory effect. These observations suggest the existence of a distinct low temperature cluster-glass like phase within dominant ferromagnetic phase. But, once the same sample is properly homogenized by repeated grinding and annealing process, the low temperature glassy phase disappears, and it shows a pure ferromagnetic behavior. Our comparative study clearly reveals that the reentrant spin-glass like nature is not intrinsic to La0.5Sr0.5CoO3 system, in fact this is an outcome of the compositional inhomogeneity.
Resumo:
This research was aimed at determining optimum Cu content for the alloy design of SUS 30411 austenitic steels having enhanced heat and corrosion resistance. Samples of the steel containing 1, 3, and 5 wt.% Cu were subjected to repeated heating and cooling to a temperature of 760 degrees C and to a maximum of 15 cycles. Hardness measurement and the corrosion behaviour in 1M NaCl solution were evaluated. The hardness increases with an increase in the number of heating cycles for the three compositions. The hardening response to the thermal cycles is however higher for the 1 wt.% Cu composition and decreases with an increase in the Cu wt.%. The SUS 30411 steel containing 3 wt.% Cu exhibited the least susceptibility to corrosion in the 1M NaCl solution irrespective of the number of heating cycles. The SUS 30411 steel containing 1 wt.% Cu was found to exhibit the highest susceptibility to corrosion for all heating cycles compared.
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)