129 resultados para radiation variability
Resumo:
For over 300 years, the monsoon has been viewed as a gigantic land-sea breeze. It is shown in this paper that satellite and conventional observations support an alternative hypothesis, which considers the monsoon as a manifestation of seasonal migration of the intertropical convergence zone (ITCZ). With the focus on the Indian monsoon, the mean seasonal pattern is described, and why it is difficult to simulate it is discussed. Some facets of the intraseasonal variation, such as active-weak cycles; break monsoon; and a special feature of intraseasonal variation over the region, namely, poleward propagations of the ITCZ at intervals of 2-6 weeks, are considered. Vertical moist stability is shown to be a key parameter in the variation of monthly convection over ocean and land as well as poleward propagations. Special features of the Bay of Bengal and the monsoon brought out by observations during a national observational experiment in 1999 are briefly described.
Resumo:
Competition among weak intermolecular interactions can lead to polymorphism, the appearance of various crystalline forms of a substance with comparable cohesive energies. The crystal structures of 2-fluorophenylacetylene (2FPA) and 3-fluorophenylacetylene (3FPA), both of which are liquids at ambient conditions, have been determined by in situ cryocrystallization. Both compounds exhibit dimorphs, with one of the forms observed in common, P2(1), Z = 2 and the other form being Pna2(1), Z = 4 for 2FPA and P2(1)/c, Z = 12 for 3FPA. Variations in the crystal structures of the dimorphs of each of these compounds arise from subtle differences in the way in which weak intermolecular interactions such as C-H center dot center dot center dot pi and C-H center dot center dot center dot F are manifested. The interactions involving ``organic'' fluorine, are entirely different from those in the known structure of 4-fluorophenylacetylene (4FPA), space group P2(1)/c, Z = 4. The commonalities and differences in these polymorphs of 2FPA and 3FPA have been analyzed in terms of supramolecular synthons and extended long-range synthon aufbau module (LSAM) patterns. These structures are compared with the three polymorphs of phenylacetylene, in terms of the T-shaped C-H center dot center dot center dot pi interaction, a feature common to all these structures.
Resumo:
In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 sq.km. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, ordinary kriging and Support Vector Machine (SVM) models have been developed. In ordinary kriging, the knowledge of the semivariogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of Bangalore, where field measurements are not available. A cross validation (Q1 and Q2) analysis is also done for the developed ordinary kriging model. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing e-insensitive loss function has been used to predict the reduced level of rock from a large set of data. A comparison between ordinary kriging and SVM model demonstrates that the SVM is superior to ordinary kriging in predicting rock depth.
Resumo:
A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The radiation resistance of off-set series slots has been calculated for microstrip lines using the method proposed by Breithaupt for strip lines. A suitable transformation is made to allow for the difference in structure. Curves relating the slot resistance to the microstrip length, width and off-set distance have been obtained. Microstrip slot antenna arrays are becoming important in applications where size and weight are of significance. The radiation resistance is a very significant parameter is the design of such arrays. Oliner first calculated the radiation conductance of centered series slots in strip transmission lines and that analysis was extended by Breithaupt to the off-set series slots in stripline. The radiation resistance of off-set series slots in microstrip lines is calculated in this paper and data are obtained for different slot lengths, slot widths and off-set values. An example of the use of these data in array antenna design in shown.
Resumo:
We investigate the variation of the gas and the radiation pressure in accretion disks during the infall of matter to the black hole and its effect to the flow. While the flow far away from the black hole might be non-relativistic, in the vicinity of the black hole it is expected to be relativistic behaving more like radiation. Therefore, the ratio of gas pressure to total pressure (beta) and the underlying polytropic index (gamma) should not be constant throughout the flow. We obtain that accretion flows exhibit significant variation of beta and then gamma, which affects solutions described in the standard literature based on constant beta. Certain solutions for a particular set of initial parameters with a constant beta do not exist when the variation of beta is incorporated appropriately. We model the viscous sub-Keplerian accretion disk with a nonzero component of advection and pressure gradient around black holes by preserving the conservations of mass, momentum, energy, supplemented by the evolution of beta. By solving the set of five coupled differential equations, we obtain the thermo-hydrodynamical properties of the flow. We show that during infall, beta of the flow could vary up to similar to 300%, while gamma up to similar to 20%. This might have a significant impact to the disk solutions in explaining observed data, e.g. super-luminal jets from disks, luminosity, and then extracting fundamental properties from them. Hence any conclusion based on constant gamma and beta should be taken with caution and corrected. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.