138 resultados para proton radiation
Resumo:
Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.
Resumo:
Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multimode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beam splitters, in a transparent manner. For single-mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beam splitter, these conditions turn exactly into signatures of negativity under partial transpose (NPT) entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beam-splitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three-mode beam-splitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.
Resumo:
The dynamics of poly(vinyl acetate) in toluene solution has been examined by C-13 and proton relaxation. C-13 spin-lattice relaxation time and nuclear Overhauser enhancement measurements were carried out as a function of temperature at 50.3 and 100.6 MHz. The spin-lattice relaxation times for backbone protons were measured at different temperatures at 200 MHz. The relaxation data have been analyzed using the Hall-Weber-Helfand (HWH) model, which describes backbone dynamics in terms of conformational transitions and the Dejean-Laupretre-Monnerie (DLM) model, which includes bond librations in addition to conformational transitions. The parameters obtained from the analysis of C-13 relaxation data were utilized to predict the proton relaxation data. The DLM model was found to be more successful in reproducing the experimental results. To study the influence of libration further, proton relaxation data for poly(vinyl acetate) over a wider range of temperature reported in the literature were analyzed by these two models. The DLM model could reproduce the experimental data at all temperatures whereas the HWH model was found to be successful only in accounting for the experimental data at high temperatures. The results demonstrate the importance of including the librational mode in the description of the backbone dynamics in polymers.
Resumo:
Amorphous conducting carbon films are prepared by plasma assisted chemical vapour deposition and their d.c. conductivity (similar to 100 Scm(-1)) is studied from 300K down to 4.2K. The films were irradiated by high energy ion beam(I+13, 170 MeV) with a dose of 10(13) ions/cm(2). As a result a marked decrease in conductivity by two to three orders in magnitude was observed. The structural changes and the defects in the films caused by ion irradiation are studied using photoluminescence, persistent photoconductivity, and ESR spectroscopy.
Resumo:
In an earlier work, we had proposed a two-band, non-grey radiative transfer model for heat transfer in forehearths with simultaneous optically thick and thin approximations for molten glass interiors and at boundaries. Here using the same model, the radiative interaction of the top-crown and bottom-refractory walls with interior layers of shallow molten glass is studied by varying the wall emissivities. The forehearth exit temperature profiles for higher wall emissivities (0.9) show better conditioning of the glass for white flint glasses (optically thin).
Resumo:
A new polymer electrolyte (PEG)(x) NH4ClO4(x = 5, 10, 15, 20) has been prepared that shows protonic conduction. The room temperature conductivities are of the order of 10(-7) S/cm, and increase with decrease in salt concentration. NMR line width studies indicate fairly low glass transition temperatures of the polymer salt complexes.
Resumo:
The H-1 NMR spectra of N-(4-methylphenyl)-2-pyridinecarboxamide and N-(4-methyl-phenyl)-3-pyridine carboxamide in CDCl3 and (CD3)(2)CO have been analysed with the help of the COSY spectra. Accurate H-1 chemical shifts and coupling constants have been obtained from the simulated spectra. From H-1 NMR and Nuclear Overhauser Enhancement (NOE) measurements the molecular conformations are inferred. The pyridyl ring is apparently coplanar with the amide group while the 3-pyridyl ring is nearly perpendicular to the amide plane so that the amide proton is nearer to the 2-pyridyl proton H2 than to H4. The orientation of the 4-methylphenyl group could not be determined.
Resumo:
Proton changes have been advanced as being the key molecular basis for the mutagenecity of alkylated DNA bases and nucleosides, leading to questions as to which protons are involved and whether the protic changes are tautomeric shifts or abstractions. This semiempirical molecular orbital study seeks to clarify the issue by examining the various possibilities open for these protic changes in a number of methylated guanines and thymines and their deoxynucleosides. Proton shifts leading to tautomer formation are not predicted as being thermodynamically favourable in most cases. The most feasible proton abstractions are predicted to involve the Watson-Crick protons in all cases, which corroborates Watson-Crick proton loss as providing the key molecular basis for the induction of point mutations. The calculated proton acidities correlate well with experimental data. The gas-phase deprotonation enthalpies for a number of alkylated nucleosides are found to correlate linearly with the solvent-phase pK(a) values. The theoretically calculated enthalpies in a simulated aqueous solvent phase of the deprotonation reactions of various nucleic acid bases are also found to have good linear correlations with experimental pK(a) values. The consensus of these calculations is that O-6-alkyldeoxyguanosines, and O-2- and O-4-alkyldeoxythymidines would be mutagenic while N-7-alkyldeoxyguanosines would not be mutagenic (as experiment indicates). The untested N-3-methyldeoxyguanosine is predicted to be mutagenic. (C) 1997 Elsevier Science B.V.
Resumo:
Role of swift heavy ion irradiation on the modification of transport and structural properties of high temperature superconductors is studied. Good quality YBCO thin films prepared by high pressure oxygen sputtering and laser ablation were used in this investigation. Resistivity and atomic force microscopy (AFM) were mainly used to probe superconducting and microstructural modifications resulted from the irradiation of high energy and heavy ions like 100 MeV oxygen and 200 MeV silver. Radiation induced sputtering or erosion is likely to be a major disastrous component of such high energy irradiation that could be powerful in masking phase coherence effects, atleast in grain boundaries. The extent of damage/nature of defects other than columnar defects produced by swift heavy ions is discussed in the light of AFM measurements. The effect of high energy oxygen ion irradiation is anomalous. A clear annealing effect at higher doses is seen. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The behaviour of rat lenticular enzymes, glucose-6-phosphate dehydrogena.se (G6PD, EC: 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGD, EC: 1.1.1.44) as a function of age and UVB irradiation (in vitro) was investigated by irradiating the lens homogenate from 3-and 12-month-old rats at 300 nm (100 μW cm 2). In the 3-month-old group the specific activities of G6PD and 6PGD were reduced by 26% and 42%, respectively, after 24 h of irradiation, whereas in the 12-month-old group the decrease was 38% and 49% respectively, which suggests that the susceptibility of HMPS enzymes to UVB damage is higher in older lenses. The decrease in specitic activity was associated with a change in apparent Km and Vmax (marginal in 3 months and significant in 12 months) of these enzymes due to UVB irradiation. UVB irradiation also decreased the levels of NADPH and NADPH/NADP ratio. These changes, altered activities of G6PD and 6PGD and altered levels of NADPH. may in turn have a bearing on lens transparency.
Resumo:
Two drug-drug co-crystals of the anti-tuberculosis drugs isoniazid (INH), pyrazinamide (PYR) and 4-aminosalicylic acid (PAS) are reported. The first is the 1 : 1 molecular complex of INH and PAS. The second is the monohydrate of the 1 : 1 complex of PYR and PAS. The crystal structures of both co-crystals are characterized by a number of hydrogen bonded synthons. Hydrogen bonding of the COOH center dot center dot center dot N-pyridine type is found in both cases. In the INH : PAS co-crystal, there are two symmetry independent COOH center dot center dot center dot center dot N-pyridine hydrogen bonds. In one of these, the H-atom is located on the carboxylic group and is indicative of a co-crystal. In the second case, partial proton transfer occurs across the hydrogen bond, and the extent of proton transfer depends on the temperature. This is more indicative of a salt. Drug-drug co-crystals may have some bearing in the treatment of tuberculosis.
Resumo:
We describe here a photoelectron spectroscopy beamline installed on Indus-1 storage ring. Initially we give a brief description of optical and mechanical layout of beam-line. The beamline optics was designed to cover energy range from 10 eV to 200 eV and it consists of a pre-focusing mirror, a toroidal grating monochromator and a post-focusing mirror. We then discuss indigenously developed ultra high vacuum compatible work station to carry out angle integrated photoemission experiments. The beamline has been successfully commissioned and photoemission measurements on a variety of standard samples are presented.
Resumo:
Proton spin lattice relaxation time (T-1) measurements have been carried out in methylammonium trichloro stannate(II) (CH3NH3SnCl3) as a function of temperature in the range 317-5 K at a Larmor frequency of 10 MHz. The temperature dependence of T-1 shows a phase transition around 220 K and four T-1 minima (294 K, 62 K, 32 K and 12 K). The results are discussed in terms of proton dynamics, namely, uncorrelated reorientation of NH3 and CH3 groups at high temperatures and tunnelling of NH3 and CH3 protons at low temperatures.
Resumo:
The facile method of solution combustion was used to synthesize gamma(L)-Bi(2)MoO(6). The material was crystallized in a purely crystalline orthorhombic phase with sizes varying from 300 to 500 nm. Because the band gap was 2.51 eV, the degradation of wide variety of cationic and anionic dyes was investigated under solar radiation. Despite the low surface area (< 1 m(2)/g) of the synthesized material, gamma(L)-Bi(2)MoO(6) showed high photocatalytic activity under solar radiation due to its electronic and morphological properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The relaxor ferroelectric compositions Pb(Fe1/2Nb1/2)O-3 (PEN) and [Pb(Mg1/3Nb2/3)O-3](0.8)-[PbTiO3](0.2) (PMN-PT) are studied for their radiation response to the high energy heavy ions (50 MeV Li3+, fluence 1 X 10(13)-1 X 10(14) ions/cm(2)) in terms of their structural, dielectric and piezoelectric properties. There was no change in the crystallinity of both the compositions after irradiation as seen from the XRD. The PEN composition did not show much change in the dielectric constant but the value of T-m decreased by 8degreesC. The PMN-PT composition showed an increase in the dielectric constant with increase in the irradiation fluence from 1 x 10(13) to 1 X 10(14) ions/cm(2) with no change in the value of T-m. The piezoelectric coefficient decreased in both the samples after irradiation. Among the compositions studied, PEN is observed to be more radiation resistant to changes in structural and dielectric properties than PM-PT. (C) 2003 Elsevier Ltd. All rights reserved.