83 resultados para poly glutamic acid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copolymers of aniline and ortholmeta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5 X 10(-1) S cm(-1)). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NNM spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoclusters of Pt were electrochemically deposited on a conducting polymer, namely, poly(3,4-ethylenedioxythiophene) (PEDOT), which was also electrochemically deposited on carbon paper current collector. PEDOT facilitated uniform distribution of Pt nanoclusters, when compared with Pt electrodeposition on bare carbon paper substrate. Spectroscopy data indicated absence of any interaction between PEDOT and Pt. The electrochemically active surface area as measured from carbon monoxide adsorption followed by its oxidation was several times greater for Pt-PEDOT/C electrode in comparison with Pt/C electrode. The catalytic activity of Pt-PEDOT/C electrode for electrooxidation of formic acid was significantly greater than that of Pt/C electrode. Amperometry data suggested that the electrodes were stable for continuous oxidation of HCOOH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheology of a poly(alpha-olefin) base oil (PAO) in a sliding point contact has been investigated by total internal reflection (TIR) Raman spectroscopy. TIR Raman has the sensitivity to analyse nanometer-thick lubricant films in a tribological contact. The Raman signal generated from the sliding contact was used to determine the lubricant film thickness. The experimentally obtained film thicknesses were compared with theoretical calculations and a transition from Newtonian to non-Newtonian behaviour was observed at high shear rates. The Raman spectra showed no significant changes in the conformation of the PAO chains under the applied conditions of pressure and shear, but the polarisation dependence of the spectra revealed a preferred orientation of the hydrocarbon side chains in the shear-thinned region. Monolayers formed by a boundary lubricant, arachidic acid, dissolved in the PAO could be detected on the surfaces in the elastohydrodynamic regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite advances in regenerative medicine, the cost of such therapies is beyond the reach of many patients globally in part due to the use of expensive biomedical polymers. Large volumes of poly(ethylene terephthalate) (PET) in municipal waste is a potential source of low cost polymers. A novel polyester was prepared by a catalyst-free, melt polycondensation reaction of bis(hydroxyethylene) terephthalate derived from PET post-consumer waste with other multi-functional monomers from renewable sources such as citric acid, sebacic acid and D-mannitol. The mechanical properties and degradation rate of the polyester can be tuned by varying the composition and the post-polymerization time. The polyester was found to be elastomeric, showed excellent cytocompatibility in vitro and elicited minimal immune response in vivo. Three-dimensional porous scaffolds facilitated osteogenic differentiation and mineralization. This class of polyester derived from low cost, recycled waste and renewable sources is a promising candidate for use in regenerative medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Itaconic acid is a bio-sourced dicarboxylic acid that carries a double bond; although several reports have dealt with the radical-initiated chain polymerization of dialkyl itaconates, only a few studies have utilized it as a di-acid monomer to prepare polyesters. In this study, we demonstrate that dibutyl itaconate can be melt-condensed with aliphatic diols to generate unsaturated polyesters; importantly, we show that the double bonds remain unaffected during the melt polymerization. A particularly useful attribute of these polyesters is that the exo-chain double bonds are conjugated to the ester carbonyl and, therefore, can serve as excellent Michael acceptors. A variety of organic thiols, such as alkane thiols, MPEG thiol, thioglycerol, derivatized cysteine etc., were shown to quantitatively Michael-add to the exo-chain double bonds and generate interesting functionalized polyesters. Similarly, organic amines, such as N-methyl-benzylamine, diallyl amine and proline, also add across the double bond; thus, these poly(alkylene itaconate)s could serve as potentially bio-benign polyesters that could be quantitatively transformed into a variety of interesting and potentially useful functionalized polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 degrees C and post-curing at 120 degrees C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this work was to develop a family of crosslinked poly(xylitol adipate salicylate)s with a wide range of tunable release properties for delivering pharmacologically active salicylic acid. The synthesis parameters and release conditions were varied to modulate polyester properties and to understand the mechanism of release. Varying release rates were obtained upon longer curing (35% in the noncured polymer to 10% in the cured polymer in 7 days). Differential salicylic acid loading led to the synthesis of polymers with variable cross-linking and the release could be tuned (100% release for the lowest loading to 30% in the highest loading). Controlled release was monitored by changing various factors, and the release profiles were dependent on the stoichiometric composition, pH, curing time, and presence of enzyme. The polymer released a combination of salicylic acid and disalicylic acid, and the released products were found to be nontoxic. Minimal hemolysis and platelet activation indicated good blood compatibility. These polymers qualify as ``bioactive'' and ``resorbable'' and can, therefore, find applications as immunomodulatory resorbable biomaterials with tunable release properties.