166 resultados para phase transitions-crystallographic


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered ionic potential Delta and the on-site Hubbard U. We find that for a finite Delta and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U = U-AF via a first-order phase transition. For U smaller than U-AF the system is a correlated band insulator. Both methods show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost via a first-order phase transition at a transition temperature T-AF(U,Delta) or, equivalently, on decreasing U below U-AF(T,Delta)], within both methods, for weak to intermediate values of U/t. In the strongly correlated regime, where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T, DMFT + CTQMC shows a second phase transition (not seen within DMFT + IPT) on increasing U beyond U-AF. At U-N > U-AF, when the Neel temperature T-N for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second-order transition. For U >> Delta, T-N similar to t(2)/U(1 - x(2)), where x = 2 Delta/U and thus T-N increases with increase in Delta/U. In the three-dimensional parameter space of (U/t, T/t, and Delta/t), as T increases, the surface of first-order transition at U-AF(T,Delta) and that of the second-order transition at U-N(T,Delta) approach each other, shrinking the range over which the AFM order is stable. There is a line of tricritical points that separates the surfaces of first- and second-order phase transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High temperature expansion is an effective tool for studying second order phase transitions. With this in mind, we have looked at a high momentum expansion for homogeneous isotropic turbulence. Combining our results with those of the inertial range, we give another view of extended self-similarity (ESS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A lattice formahsm using "spin variables" is employed to analyse multi-state models for the adsorption of neutral dipoles.In particular, a spin-1/2 (two-state) model incorporating permanent and reduced dipole moments of the solvent and the organic adsorbate,substrate interactions, and &screteness of charge effects is analysed The resulting Generalized Islng Hamaltonian is solved under mean field approximation (MFA) in order to derive the adsorption isotherm for organic molecules A few spin-1 (three-state) models are also analysed under MFA to describe the competitive adsorption of multi-state solvent and organic dipoles, and the appropriate equilibrium relations are derived The unification and isomorphism existing at the Hamlltonlan level for several diverse realizations, such as adsorption of ions and solvent/orgamc molecules, is indicated The possibility of analysing phase transitions using this generalized approach is briefly indicated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium rubidium sulphate, LiRbSO4 (LRS), undergoes a sequence of four phase transitions at 166, 185, 202 and 204°C. The phase between 202 and 204°C is incommensurate. Polarized phonon Raman spectra in the frequency region of 50-1200 cm-1 are presented to identify the external and internal vibrational modes at room temperature. The internal mode frequencies of the sulphate ions are presented in the temperature region from -150 to 230°C covering all the phase transitions. The total integrated areas of the 1, 2 and 4 modes show an anomalous increase across the phase transitions. The frequencies of the symmetric stretching (1) and symmetric bending (2) modes do not show any changes at the phase transitions, but the width of the 2 mode shows changes across the phase transitions. A small increase in the linewidth of the 2 mode observed in the incommensurate phase is attributed to the influence of the incommensurate modulation wave. A DSC thermogram showed endothermic peaks during heating at all the phase transitions. The IR spectrum recorded at room temperature showed the expected Au and Bu internal modes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of paramagnetic probes in membrane research is reviewed. Electron paramagnetic resonance studies on model and biological membranes doped with covalent and non-covalent spin-labels have been discussed with special emphasis on the methodology and the type of information obtainable on several important phenomena like membrane fluidity, lipid flip-flop, lateral diffusion of lipids, lipid phase separation, lipid bilayer phase transitions, lipid-protein interactions and membrane permeability. Nuclear magnetic resonance spectroscopy has also been effectively used to study the conformations of cation mediators across membranes and to analyse in detail the transmembrane ionic motions at the mechanistic level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After briefly reviewing the theory and instrumentation, results from a variety of experiments carried out by the authors on the photoacoustic spectroscopy of solids and surfaces by employing an indigenous spectrometer are discussed in the light of the recent literature. Some of the important findings discussed are, phase angle spectroscopy, anomalous behaviour of monolayers, unusual frequency dependence in small cell volumes, spectra of a variety of solids including amorphous arsenic chalcogenides, photoacoustic detection of phase transitions and determination of surface areas and surface acidities of oxides. Recent developments such as piezoelectric photoacoustic spectroscopy, depth profiling and subsurface imaging are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compact clamp-type high pressure cell for carrying out electrical conductivity measurements on small solid samples of size 1 mm or less at pressures upto 8 GPa (i.e., 80 kbar) and for use down to 77 K has been designed and fabricated. The pressure generated in the sample region has been calibrated at room temperature against the polymorphic phase transitions of Bismuth and Ytterbium. The pressure relaxation of the clamp at low temperatures has been estimated by monitoring the electrical conductivity behavior of lead. Review of Scientific Instruments is copyrighted by The American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To gain a better understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially, the temporal oscillations are periodic; this periodic behaviour becoming more and more complicated with increasing Reynolds number until the film enters a spatially disordered nonequilibrium statistical steady state that is turbulent. We study this sequence of transitions using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g. Poincare maps, and theoretical methods that have been developed to study the melting of an equilibrium crystal or the freezing of a liquid and that lead to a natural set of order parameters for the crystalline phases and spatial autocorrelation functions that characterize short- and long-range order in the turbulent and crystalline phases, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the measurements of Alcock and Zador, Grundy et al. estimated an uncertainty of the order of +/- 5 kJ mol(-1) for the standard Gibbs energy of formation of MnO in a recent assessment. Since the evaluation of thermodynamic data for the higher oxides Mn3O4, Mn2O3, and MnO2 depends on values for MnO, a redetermination of its Gibbs energy of formation was undertaken in the temperature range from 875 to 1300 K using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the solid electrolyte and Fe + Fe1-delta O as the reference electrode. The cell can be presented as Pt, Mn + MnO/YDT/Fe + Fe1+delta O, Pt Since the metals Fe and Mn undergo phase transitions in the temperature range of measurement, the reversible emf of the cell is represented by the three linear segments. Combining the emf with the oxygen potential for the reference electrode, the standard Gibbs energy of formation of MnO from alpha-Mn and gaseous diatomic oxygen in the temperature range from 875 to 980 K is obtained as: Delta G(f)(o)/Jmol(-1)(+/- 250) = -385624 + 73.071T From 980 to 1300 K the Gibbs energy of formation of MnO from beta-Mn and oxygen gas is given by: Delta G(f)(o)/Jmol(-1)(+/- 250) = -387850 + 75.36T The new data are in excellent agreement with the earlier measurements of Alcock and Zador. Grundy et al. incorrectly analyzed the data of Alcock and Zador showing relatively large difference (+/- 5 kJ mol(-1)) in Gibbs energies of MnO from their two cells with Fe + Fe1-delta O and Ni + NiO as reference electrodes. Thermodynamic data for MnO is reassessed in the light of the new measurements. A table of refined thermodynamic data for MnO from 298.15 to 2000 K is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The critical behavior of osmotic susceptibility in an aqueous electrolyte mixture 1-propanol (1P)+water (W)+potassium chloride is reported. This mixture exhibits re-entrant phase transitions and has a nearly parabolic critical line with its apex representing a double critical point (DCP). The behavior of the susceptibility exponent is deduced from static light-scattering measurements, on approaching the lower critical solution temperatures (TL’s) along different experimental paths (by varying t) in the one-phase region. The light-scattering data analysis substantiates the existence of a nonmonotonic crossover behavior of the susceptibility exponent in this mixture. For the TL far away from the DCP, the effective susceptibility exponent γeff as a function of t displays a nonmonotonic crossover from its single limit three-dimensional (3D)-Ising value ( ∼ 1.24) toward its mean-field value with increase in t. While for that closest to the DCP, γeff displays a sharp, nonmonotonic crossover from its nearly doubled 3D-Ising value toward its nearly doubled mean-field value with increase in t. The renormalized Ising regime extends over a relatively larger t range for the TL closest to the DCP, and a trend toward shrinkage in the renormalized Ising regime is observed as TL shifts away from the DCP. Nevertheless, the crossover to the mean-field limit extends well beyond t>10−2 for the TL’s studied. The observed crossover behavior is attributed to the presence of strong ion-induced clustering in this mixture, as revealed by various structure probing techniques. As far as the critical behavior in complex or associating mixtures with special critical points (like the DCP) is concerned, our results indicate that the influence of the DCP on the critical behavior must be taken into account not only on the renormalization of the critical exponent but also on the range of the Ising regime, which can shrink with decrease in the influence of the DCP and with the extent of structuring in the system. The utility of the field variable tUL in analyzing re-entrant phase transitions is demonstrated. The effective susceptibility exponent as a function of tUL displays a nonmonotonic crossover from its asymptotic 3D-Ising value toward a value slightly lower than its nonasymptotic mean-field value of 1. This behavior in the nonasymptotic, high tUL region is interpreted in terms of the possibility of a nonmonotonic crossover to the mean-field value from lower values, as foreseen earlier in micellar systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose alpha- and epsilon-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-l and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

H-1 NMR spin-lattice relaxation time measurements have been carried out in [(CH3)(4)N](2)SeO4 in the temperature range 389-6.6K to understand the possible phase transitions, internal motions and quantum rotational tunneling. A broad T, minimum observed around 280K is attributed to the simultaneous motions of CH3 and (CH3)(4)N groups. Magnetization recovery is found to be stretched exponential below 72 K with varying stretched exponent. Low-temperature T-1 behavior is interpreted in terms of methyl groups undergoing quantum rotational tunneling. (c) 2007 Elsevier Inc. All rights reserved.