204 resultados para pair propagator
Resumo:
C6HxsN40 +.C4H6NO~-, monoclinic, P2,,a = 5.511 (3), b = 8.438 (4), c = 15.265 (9) A, fl = 97.9 (I) °, D,, -- 1.467 (8) (flotation), D c = 1.452 Mg m -a, Z = 2. The structure has been refined to a final R value of 0.044 for 1226 independent counter-measured reflections. The conformation of the arginine molecule is different from those previously observed, whereas the conformation of the aspartate ion is similar to that found in L-aspartic acid, DL-aspartic acid and L-lysine L-aspartate. The unlike molecules aggregate into separate alternating layers and the a-amino and acarboxylate groups in the arginine layer are periodically brought into close proximity in a 'headto-tail' arrangement. There exist a specific ion-pair interaction involving electrostatic attraction and two nearly parallel N-H...O hydrogen bonds between the guanidyl group and the a-carboxylate group of the aspartate ion.
Resumo:
The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.
Resumo:
Synthesis and structures of several new oxides containing bismuth are described. Three types of structures are common among the multinary oxides containing trivalent bismuth. They are the sillenite structure of γ-Bi2O3, the layered perovskite structure of Aurivillius phases and the pyrochlore structure. The influence of Bi3+∶6s 2 lone pair electrons is seen in all the three structures. In transition metal oxides containing trivalent bismuth,d o cations (Ti4+, Nb5+, W6+) stabilize the layered perovskite structure, while cations containing partially-filledd orbitals (V4+, Cr3+, Fe3+) favour pyrochlore-related structures. Ferroelectric distortion ofMO6 octahedra of thed o cations seems to play an important role in stabilizing layered perovskite structures.
Resumo:
The coalescence of nearly rigid liquid droplets in a turbulent flow field is viewed as the drainage of a thin film of liquid under the action of a stochastic force representing the effect of turbulence. The force squeezing the drop pair is modelled as a correlated random function of time. The drops are assumed to coalesce once the film thickness becomes smaller than a critical thickness while they are regarded as separated if their distance of separation is larger than a prescribed distance. A semi-analytical solution is derived to determine the coalescence efficiency. The veracity of the solution procedure is established via a Monte-Carlo solution scheme. The model predicts a reversing trend of the dependence of the coalescence efficiency on the drop radii, the film liquid viscosity and the turbulence energy dissipation per unit mass, as the relative fluctuation increases. However, the dependence on physical parameters is weak (especially at high relative fluctuation) so that for the smallest droplets (which are nearly rigid) the coalescence efficiency may be treated as an empirical constant. The predictions of this model are compared with those of a white-noise force model. The results of this paper and those in Muralidhar and Ramkrishna (1986, Ind. Engng Chem. Fundam. 25, 554-56) suggest that dynamic drop deformation is the key factor that influences the coalescence efficiency.
Resumo:
In the systematic study of amine … LiCl [amines = NH3, CH3NH2, (CH3)2NH] complexes the possibility of an ion-pair structure and the effect of methylation on the stabilization energy is investigated. ΔEis evaluated by the SCF/4-31G method and augmented by the approximate dispersion energy calculated perturbationally. The interaction energy decreases with the increasing number of methyl groups in the amine. The dispersion energy plays a negligible role in the stabilization of complexes. None of the systems studied are ion pairs; their Li bonds are of a so-called molecular type. Due to the divergence of the multipole expansion, the attempt to correct the 4-31G stabilization energies via the electrostatic energy fails. The relative order of the ΔE in the series of complexes is verified instead in the extended basis set calculation. The lithium bonds are compared with their H-bonded analogues.
Resumo:
Monte Carlo simulations with realistic interaction potentials have been carried out on isopentane to investigate the glass transition. Intermolecular pair-correlation functions of the glass show distinct differences from those of the liquid, the CH-CH pair-correlation function being uniquely different from the other pair-correlation functions. The coordination number of the glass is higher than that of the liquid, and the packing in the glass seems to be mainly governed by the geometrical constraints of the molecule. Annealing affects the properties of the glass significantly.
Resumo:
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.
Resumo:
A detailed analysis of the 1H and 13C NMR spectra of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones is presented. The chemical shift of the C-5 angular methyl, the C-2 alkyl/olefinic (C-10)/C-2 methine protons, the aromatic proton shieldings and the characteristic AMX and ABX spectral pattern of the ketomethylene and bridgehead protons were found to be sensitive to the phenyl ring orientation (anisotropy). These distinctive features could be used for configurational distinction for this class of compounds. With increasing ortho-methoxy substitution on the phenyl ring, considerable deshilelding of the bridgehead proton was observed (ca. 0.6 ppm). Absence of the C-2 alkyl group in the desalkyl isomers resulted in substantial changes in the chemical shifts of different protons. A study of the NMR spectra of the corresponding bicyclic compounds with C-2 methoxy/hydroxy substitution instead of the aryl group revealed that the anisotropy of the phenyl ring and the electronegative oxygen substituents have opposite effects. The 13C NMR spectral assignment of each carbon resonance of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones and the corresponding C-2 methoxy/hydroxy/chloro and methyl bicyclic compounds are reported. Additional ortho-methoxy substitution on the phenyl ring was found to produce considerable high field shifts of the C-10 and C-1 carbon resonances. A high-field shift was observed for the C-6 and C-8 carbonyl carbons, presumably due to 1,3-dicarbonyl interactions. The chemical shifts of C-1 aromatic, C-10 alkyl and C-2 carbons, which are sensitive to exo/endo isomerism, could be utilized in differentiating a pair of isomers.
Resumo:
Bread undergoes several physicochemical changes during storage that results in a rapid loss of freshness. These changes depend on moisture content present in bread product. An instrument based on electrical impedance spectroscopy technique is developed to estimate moisture content of bread at different zones using designed multi-channel ring electrodes. A dedicated AT89S52 microcontroller and associated peripherals are employed for hardware. A constant current is applied across bread loaf through central pair of electrodes and developed potential across different zones of bread loaf are measured using remaining four ring electrode pairs. These measured values of voltage and current are used to measure the impedance at each zone. Electrical impedance behavior of the bread loaf at crust and crumb is investigated during storage. A linear relationship is observed between the measured impedance and moisture content present in crust and crumb of bread loaf during storage of 120 hours.
Resumo:
Recent work of Jones et al. giving the long-range behaviour of the pair correlation function is used to confirm that the critical ratio Pc/nckBTc = 1/2 in the Born-Green theory. This deviates from experimental results on simple insulating liquids by more than the predictions of the van der Waals equation of state. A brief discussion of conditions for thermodynamic consistency, which the Born-Green theory violates, is then given. Finally, the approach of the Ornstein-Zernike correlation function to its critical point behaviour is discussed within the Born-Green theory.
Resumo:
The electronic absorption and i.r. spectroscopic studies are reported for the hydrogen bonding systems involving alcohol and various ketones. It is shown that the hydrogen bonding abilities of ketones are determined by the extent of delocalization of the lone pair electrons in their non-bonding molecular orbitals. Evidence for the formation of very weak intermolecular hydrogen bonds between alcohol and the π-electron part of the dicarbonyls has also been presented from the i.r. studies in the 3400–3700 cm−1 region.
Resumo:
The routine use of proton NMR for the visualization of enantiomers, aligned in the chiral liquid crystal solvent poly-γ-benzyl-l-glutamate (PBLG), is restricted due to severe loss of resolution arising from large number of pair wise interaction of nuclear spins. In the present study, we have designed two experimental techniques for their visualization utilizing the natural abundance 13C edited selective refocusing of single quantum (CH-SERF) and double quantum (CH-DQSERF) coherences. The methods achieve chiral discrimination and aid in the simultaneous determination of homonuclear couplings between active and passive spins and heteronuclear couplings between the excited protons and the participating 13C spin. The CH-SERF also overcomes the problem of overlap of central transitions of the methyl selective refocusing (SERF) experiment resulting in better chiral discrimination. Theoretical description of the evolution of magnetization in both the sequences has been discussed using polarization operator formalism.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric problem of a disk oscillating harmonically in a viscous fluid whose surface is contaminated with a surfactant film. The equation of the first kind is converted to a pair of coupled integral equations of the second kind, which are solved numerically. The resistive torque on the disk is evaluated and surface velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the coefficient of viscosity of the substrate fluid, and the depth of the disk below the surface.
Resumo:
In this paper, an attempt is made to obtain the free vibration response of hybrid, laminated rectangular and skew plates. The Galerkin technique is employed to obtain an approximate solution of the governing differential equations. It is found that this technique is well suited for the study of such problems. Results are presented in a graphical form for plates with one pair of opposite edges simply supported and the other two edges clamped. The method is quite general and can be applied to any other boundary conditions.