138 resultados para ordinary differential equation (ODE)
Resumo:
The advent of large and fast digital computers and development of numerical techniques suited to these have made it possible to review the analysis of important fundamental and practical problems and phenomena of engineering which have remained intractable for a long time. The understanding of the load transfer between pin and plate is one such. Inspite of continuous attack on these problems for over half a century, classical solutions have remained limited in their approach and value to the understanding of the phenomena and the generation of design data. On the other hand, the finite element methods that have grown simultaneously with the recent development of computers have been helpful in analysing specific problems and answering specific questions, but are yet to be harnessed to assist in obtaining with economy a clearer understanding of the phenomena of partial separation and contact, friction and slip, and fretting and fatigue in pin joints. Against this background, it is useful to explore the application of the classical simple differential equation methods with the aid of computer power to open up this very important area. In this paper we describe some of the recent and current work at the Indian Institute of Science in this last direction.
Resumo:
A novel universal approach to understand the self-deflagration in solids has been attempted by using basic thermodynamic equation of partial differentiation, where burning mte depends on the initial temperature and pressure of the system. Self-deflagrating solids are rare and are reported only in few compounds like ammonium perchlorate (AP), polystyrene peroxide and tetrazole. This approach has led us to understand the unique characteristics of AP, viz. the existence of low pressure deflagration limit (LPL 20 atm), hitherto not understood sufficiently. This analysis infers that the overall surface activation energy comprises of two components governed by the condensed phase and gas phase processes. The most attractive feature of the model is the identification of a new subcritical regime I' below LPL where AP does not burn. The model is aptly supported by the thermochemical computations and temperature-profile analyses of the combustion train. The thermodynamic model is further corroborated from the kinetic analysis of the high pressure (1-30 atm) DTA thermograms which affords distinct empirical decomposition rate laws in regimes I' and 1 (20-60 atm). Using Fourier-Kirchoff one dimensional heat transfer differential equation, the phase transition thickness and the melt-layer thickness have been computed which conform to the experimental data.
Resumo:
The statistical properties of fractional Brownian walks are used to construct a path integral representation of the conformations of polymers with different degrees of bond correlation. We specifically derive an expression for the distribution function of the chains’ end‐to‐end distance, and evaluate it by several independent methods, including direct evaluation of the discrete limit of the path integral, decomposition into normal modes, and solution of a partial differential equation. The distribution function is found to be Gaussian in the spatial coordinates of the monomer positions, as in the random walk description of the chain, but the contour variables, which specify the location of the monomer along the chain backbone, now depend on an index h, the degree of correlation of the fractional Brownian walk. The special case of h=1/2 corresponds to the random walk. In constructing the normal mode picture of the chain, we conjecture the existence of a theorem regarding the zeros of the Bessel function.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The unsteady free convection boundary layer at the stagnation point of a two-dimensional body and an axisymmetric body with prescribed surface heat flux or temperature has been studied. The magnetic field is applied parallel to the surface and the effect of induced magnetic field has been considered. It is found that for certain powerlaw distribution of surface heat flux or temperature and magnetic field with time, the governing boundary layer equations admit a self-similar solution locally. The resulting nonlinear ordinary differential equations have been solved using a finite element method and a shooting method with Newton's corrections for missing initial conditions. The results show that the skin friction and heat transfer coefficients, and x-component of the induced magnetic field on the surface increase with the applied magnetic field. In general, the skin friction, heat transfer and x-component of the induced magnetic field for axisymmetric case are more than those of the two-dimensional case. Also they change more when the surface heat flux or temperature decreases with time than when it increases with time. The skin friction, heat transfer and x-component of the induced magnetic field are significantly affected by the magnetic Prandtl number and they increase as the magnetic Prandtl number decreases. The skin friction and x-component of the magnetic field increase with the dissipation parameter, but heat transfer decreases.
Resumo:
A new approach based on variable density in conjunction with shallow shell theory is proposed to analyse rotating shallow shell of variable thickness. Coupled non-linear ordinary differential equations governing shallows shells of variable thickness are first derived before applying the variable density approach. Results obtained from the new approach compare well with FEM calculation for a wide range of profiles considered in this paper.
Resumo:
The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
An exact three-dimensional elasticity solution has been obtained for an infinitely long, thick transversely isotropic circular cylindrical shell panel, simply supported along the longitudinal edges and subjected to a radial patch load. Using a set of three displacement functions, the boundary value problem is reduced to Bessel's differential equation. Numerical results are presented for different thickness to mean radius ratios and semicentral angles of the shell panel. Classical and first-order shear deformation orthotropic shell theories have been examined in comparison with the present elasticity solution.
Resumo:
Most of the structural elements like beams, cables etc. are flexible and should be modeled as distributed parameter systems (DPS) to represent the reality better. For large structures, the usual approach of 'modal representation' is not an accurate representation. Moreover, for excessive vibrations (possibly due to strong wind, earthquake etc.), external power source (controller) is needed to suppress it, as the natural damping of these structures is usually small. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a set of discrete controllers for this purpose. We assume that the control force to the structure is applied through finite number of actuators, which are located at predefined locations in the spatial domain. The method used in this paper determines control forces directly from the partial differential equation (PDE) model of the system. The formulation has better practical significance, both because it leads to a closed form solution of the controller (hence avoids computational issues) as well as because a set of discrete actuators along the spatial domain can be implemented with relative ease (as compared to a continuous actuator)
Resumo:
Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.
Resumo:
The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.
Resumo:
We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.
Resumo:
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.
Resumo:
Analytical solutions of the generalized Bloch equations for an arbitrary set of initial values of the x, y, and z magnetization components are given in the rotating frame. The solutions involve the decoupling of the three coupled differential equations such that a third-order differential equation in each magnetization variable is obtained. In contrast to the previously reported solutions given by Torrey, the present attempt paves the way for more direct physical insight into the behavior of each magnetization component. Special cases have been discussed that highlight the utility of the general solutions. Representative trajectories of magnetization components are given, illustrating their behavior with respect to the values of off-resonance and initial conditions. (C) 1995 Academic Press, Inc.