90 resultados para non-global solution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Routing is a very important step in VLSI physical design. A set of nets are routed under delay and resource constraints in multi-net global routing. In this paper a delay-driven congestion-aware global routing algorithm is developed, which is a heuristic based method to solve a multi-objective NP-hard optimization problem. The proposed delay-driven Steiner tree construction method is of O(n(2) log n) complexity, where n is the number of terminal points and it provides n-approximation solution of the critical time minimization problem for a certain class of grid graphs. The existing timing-driven method (Hu and Sapatnekar, 2002) has a complexity O(n(4)) and is implemented on nets with small number of sinks. Next we propose a FPTAS Gradient algorithm for minimizing the total overflow. This is a concurrent approach considering all the nets simultaneously contrary to the existing approaches of sequential rip-up and reroute. The algorithms are implemented on ISPD98 derived benchmarks and the drastic reduction of overflow is observed. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider N points in R-d and M local coordinate systems that are related through unknown rigid transforms. For each point, we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordinates of a subset of the points. The problem of estimating the global coordinates of the N points (up to a rigid transform) from such measurements comes up in distributed approaches to molecular conformation and sensor network localization, and also in computer vision and graphics. The least-squares formulation of this problem, although nonconvex, has a well-known closed-form solution when M = 2 (based on the singular value decomposition (SVD)). However, no closed-form solution is known for M >= 3. In this paper, we demonstrate how the least-squares formulation can be relaxed into a convex program, namely, a semidefinite program (SDP). By setting up connections between the uniqueness of this SDP and results from rigidity theory, we prove conditions for exact and stable recovery for the SDP relaxation. In particular, we prove that the SDP relaxation can guarantee recovery under more adversarial conditions compared to earlier proposed spectral relaxations, and we derive error bounds for the registration error incurred by the SDP relaxation. We also present results of numerical experiments on simulated data to confirm the theoretical findings. We empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the SDP (i.e., we are able to solve the original nonconvex least-squares problem) up to a certain noise threshold, and (b) the SDP performs significantly better than spectral and manifold-optimization methods, particularly at large noise levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study introduces two new alternatives for global response sensitivity analysis based on the application of the L-2-norm and Hellinger's metric for measuring distance between two probabilistic models. Both the procedures are shown to be capable of treating dependent non-Gaussian random variable models for the input variables. The sensitivity indices obtained based on the L2-norm involve second order moments of the response, and, when applied for the case of independent and identically distributed sequence of input random variables, it is shown to be related to the classical Sobol's response sensitivity indices. The analysis based on Hellinger's metric addresses variability across entire range or segments of the response probability density function. The measure is shown to be conceptually a more satisfying alternative to the Kullback-Leibler divergence based analysis which has been reported in the existing literature. Other issues addressed in the study cover Monte Carlo simulation based methods for computing the sensitivity indices and sensitivity analysis with respect to grouped variables. Illustrative examples consist of studies on global sensitivity analysis of natural frequencies of a random multi-degree of freedom system, response of a nonlinear frame, and safety margin associated with a nonlinear performance function. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the non-enzymatic electronic detection of glucose using field effect transistor (FET) devices made of aminophenylboronic acid (APBA) functionalized reduced graphene oxide (RGO). Detection of glucose molecules was carried out over a wide dynamic range of concentration varying from 100 pM to 100 mM with a detection limit of similar to 2 nM using both covalently and non-covalently functionalized APBA-RGO complex. The normalized change in electrical conductance data shows that the FET devices made of non-covalently functionalized APBA-RGO complex (nc-APBA-RGO) exhibited a linear response to glucose aqueous solution of concentrations varying from 1 nM to 10 mM and showed 4 times enhanced sensitivity over the devices made of covalently functionalized APBA-RGO complex (c-APBA-RGO). Specificity of APBA-RGO complex to glucose is confirmed from the observation of negligible change in electrical conductance after exposure to 0.1 mM of lactose and other interfering factors. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu2SnS3 thin films were deposited by a facile sot-gel technique followed by annealing. The annealed films were structurally characterized by grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). The crystal structure was found to be tetragonal with crystallite sizes of 2.4-3 nm. Texture coefficient calculations from the GIXRD revealed the preferential orientation of the film along the (112) plane. The morphological investigations of the films were carried out using field emission scanning electron microscopy (FESEM) and the composition using electron dispersive spectroscopy (EDS). The temperature dependent current, voltage characteristics of the Cu2SnS3/AZnO heterostructure were studied. The log I-log V plot exhibited three regions of different slopes showing linear ohmic behavior and non-linear behavior following the power law. The temperature dependent current voltage characteristics revealed the variation in ideality factor and barrier height with temperature. The Richardson constant was calculated and its deviation from the theoretical value revealed the inhomogeneity of the barrier heights. Transport characteristics were modeled using the thermionic emission model. The Gaussian distribution of barrier heights was applied and from the modified Richardson plot the value of the Richardson constant was found to be 47.18 A cm(-2) K-2. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of characterizing global sensitivity indices of structural response when system uncertainties are represented using probabilistic and (or) non-probabilistic modeling frameworks (which include intervals, convex functions, and fuzzy variables) is considered. These indices are characterized in terms of distance measures between a fiducial model in which uncertainties in all the pertinent variables are taken into account and a family of hypothetical models in which uncertainty in one or more selected variables are suppressed. The distance measures considered include various probability distance measures (Hellinger,l(2), and the Kantorovich metrics, and the Kullback-Leibler divergence) and Hausdorff distance measure as applied to intervals and fuzzy variables. Illustrations include studies on an uncertainly parametered building frame carrying uncertain loads. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we report synthesis of symmetrically and non-symmetrically functionalized fluoranthene-based blue fluorescent molecular materials for non-doped electroluminescent devices. The solid state structure of these fluorophores has been established by single crystal X-ray diffraction analysis. Furthermore, a detailed experimental and theoretical study has been performed to understand the effect of substitution of symmetric and non-symmetric functional groups on optical, thermal and electrochemical properties of fluoranthene. These materials exhibit a deep blue emission and high PLQY in solution and solid state. The vacuum deposited, non-doped electroluminescent devices with the device structure ITO/NPD (15 nm)/CBP (15 nm)/EML (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al were fabricated and characterized. A systematic shift in the peak position of EL emission was observed from sky blue to bluish-green with EL maxima from 477 nm to 490 nm due to different functional groups on the periphery of fluoranthene. In addition, a high luminance of >= 2000 cd m(-2) and encouraging external quantum efficiency (EQE) of 1.1-1.4% were achieved. A correlation of the molecular structure with device performance has been established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of homogeneous hydrometeorological regions (HMRs) is necessary for various applications. Such regions are delineated by various approaches considering rainfall and temperature as two key variables. In conventional approaches, formation of regions is based on principal components (PCs)/statistics/indices determined from time series of the key variables at monthly and seasonal scales. An issue with use of PCs for regionalization is that they have to be extracted from contemporaneous records of hydrometeorological variables. Therefore, delineated regions may not be effective when the available records are limited over contemporaneous time period. A drawback associated with the use of statistics/indices is that they do not provide effective representation of the key variables when the records exhibit non-stationarity. Consequently, the resulting regions may not be effective for the desired purpose. To address these issues, a new approach is proposed in this article. The approach considers information extracted from wavelet transformations of the observed multivariate hydrometeorological time series as the basis for regionalization by global fuzzy c-means clustering procedure. The approach can account for dynamic variability in the time series and its non-stationarity (if any). Effectiveness of the proposed approach in forming HMRs is demonstrated by application to India, as there are no prior attempts to form such regions over the country. Drought severity-area-frequency (SAF) curves are constructed corresponding to each of the newly formed regions for the use in regional drought analysis, by considering standardized precipitation evapotranspiration index (SPEI) as the drought indicator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of effective therapies to eradicate persistent, slowly replicating M. tuberculosis (Mtb) represents a significant challenge to controlling the global TB epidemic. To develop such therapies, it is imperative to translate information from metabolome and proteome adaptations of persistent Mtb into the drug discovery screening platforms. To this end, reductive sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mtb. Therefore, inhibitors of this pathway are expected to serve as powerful tools in its preclinical and clinical validation as a therapeutic target for eradicating persisters. Here, we establish a first functional HTS platform for identification of APS reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules. Our HTS campaign involving 38?350 compounds led to the discovery of three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as MDR and XDR clinical isolates. Top compounds showed markedly diminished potency in a conditional Delta APSR mutant, which could be restored by complementation with Mtb APSR. Furthermore, ITC studies on representative compounds provided evidence for direct engagement of the APSR target. Finally, potent APSR inhibitors significantly decreased the cellular levels of key reduced sulfur-containing metabolites and also induced an oxidative shift in mycothiol redox potential of live Mtb, thus providing functional validation of our screening data. In summary, we have identified first-in-class inhibitors of APSR that can serve as molecular probes in unraveling the links between Mtb persistence, antibiotic tolerance, and sulfate assimilation, in addition to their potential therapeutic value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eleven coupled model intercomparison project 3 based global climate models are evaluated for the case study of Upper Malaprabha catchment, India for precipitation rate. Correlation coefficient, normalised root mean square deviation, and skill score are considered as performance indicators for evaluation in fuzzy environment and assumed to have equal impact on the global climate models. Fuzzy technique for order preference by similarity to an ideal solution is used to rank global climate models. Top three positions are occupied by MIROC3, GFDL2.1 and GISS with relative closeness of 0.7867, 0.7070, and 0.7068. IPSL-CM4, NCAR-PCMI occupied the tenth and eleventh positions with relative closeness of 0.4959 and 0.4562.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-covalent halogen-bonding interactions between n cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl center dot center dot center dot pi adduct being the global minimum, where pi cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H...Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl center dot center dot center dot pi and C-H center dot center dot center dot Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl center dot center dot center dot pi interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)(2)-CCl4) and 1:2 (C2H2-(CCl4)(2)) multimers and their identification in the low temperature matrixes were also discussed. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present experimental work reports the first observations of primary and secondary transitions in the time-averaged flame topology in a non-premixed swirling flame as the geometric swirl number S-G (a non dimensional number used to quantify the intensity of imparted swirl) is varied from a magnitude of zero till flame blowout. First observations of two transition types viz. primary and secondary transitions are reported. The primary transition represents a transformation from yellow straight jet flame (at S-G = 0) to lifted flame with blue base and finally to swirling seated (burner attached) yellow flame. Time-averaged streamline plot obtained from 2D PIV in mid-longitudinal plane shows a recirculation zone (RZ) at the immediate vicinity of burner exit. The lifted flame is stabilized along the vortex core of this RZ. Further, when S-G similar to 1.4-3, the first occurrence of vortex breakdown (VB) induced internal recirculation zone (IRZ) is witnessed. The flame now stabilizes at the upstream stagnation point of the VB-IRZ, which is attached to the burner lip. The secondary transition represents a transformation from a swirling seated flame to swirling flame with a conical tailpiece and finally to a highly-swirled near blowout oxidizer-rich flame. This transition is understood to be the result of transition in vortex breakdown modes of the swirling flow field from dual-ring VB bubble to central toroidal recirculation zone (CTRZ). The physics of transition is described on the basis of modified Rossby number (Ro(m)). Finally, when the swirl intensity is very high i.e. SG similar to 10, the flame blows out due to excessive straining and due to entrainment of large amount of oxidizer due to partial premixing. The present investigation involving changes in flame topology is immensely important because any change in global flame structure causes oscillatory heat release that can couple with dynamic pressure and velocity fluctuations leading to unsteady combustion. In this light, understanding mechanisms of flame stabilization is essential to tackle the problem of thermo-acoustic instability. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of structural dynamical systems excited by multiple random excitations is considered. Two new procedures for evaluating global response sensitivity measures with respect to the excitation components are proposed. The first procedure is valid for stationary response of linear systems under stationary random excitations and is based on the notion of Hellinger's metric of distance between two power spectral density functions. The second procedure is more generally valid and is based on the l2 norm based distance measure between two probability density functions. Specific cases which admit exact solutions are presented, and solution procedures based on Monte Carlo simulations for more general class of problems are outlined. Illustrations include studies on a parametrically excited linear system and a nonlinear random vibration problem involving moving oscillator-beam system that considers excitations attributable to random support motions and guide-way unevenness. (C) 2015 American Society of Civil Engineers.