141 resultados para non-additive effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steady two-dimensional and axisymmetric compressible nonsimilar laminar boundary-layer flows with non-uniform slot injection (or suction) and non-uniform wall enthalpy have been studied from the starting point of the streamwise co-ordinate to the exact point of separation. The effect of different free stream Mach number has also been considered. The finite discontinuities arising at the leading and trailing edges of the slot for the uniform slot injection (suction) or wall enthalpy are removed by choosing appropriate non-uniform slot injection (suction) or wall enthalpy. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation are overcome by applying the method of quasilinear implicit finite difference scheme with an appropriate selection of finer step size along the streamwise direction. It is observed that the non-uniform slot injection moves the point of separation downstream but the non-uniform slot suction has the reverse effect. The increase of Mach number shifts the point of separation upstream due to the adverse pressure gradient. The increase of total enthalpy at the wall causes the separation to occur earlier while cooling delays it. The non-uniform total enthalpy at the wall (i.e., the cooling or heating of the wall in a slot) along the streamwise co-ordinate has very little effect on the skin friction and thus on the point of separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SW accounting for tension softening effect has been obtained as the difference of SIP obtained using linear elastic fracture mechanics (LEFM) principles and SIP due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SW due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In finite element analysis, the domain integral method has been used for computation of SIR The domain integral method is used to calculate the strain energy release rate and SIF when a crack grows. Numerical studies have been conducted on notched 3-point bending concrete specimen with and without considering the cohesive stresses. It is observed from the studies that SW obtained from the finite element analysis with and without considering the cohesive stresses is in good agreement with the corresponding analytical value. The effect of cohesive stress on SW decreases with increase of crack length. Further, studies have been conducted on geometrically similar structures and observed that (i) the effect of cohesive stress on SW is significant with increase of load for a particular crack length and (iii) SW values decreases with increase of tensile strength for a particular crack length and load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dielectric properties of potassium titanyl phosphate have been investigated as a function of thickness and frequency, as well as annealing treatment under various atmospheres. The low frequency dielectric constant of KTP crystals is shown to depend upon the sample thickness, and this feature is attributed to the existence of surface layers. The frequency-dependent dielectric response of KTP exhibits a non-Debye type relaxation, with a distribution of relaxation times. The dielectric behavior of KTP samples annealed in various atmospheres shows that the low frequency dielectric constant is influenced by the contribution from the space charge layers. Prolonged annealing of the samples leads to a surface degradation, resulting in the formation of a surface layer of lower dielectric constant. This surface degradation is least when annealed in the presence of dry oxygen. From the analysis of the dielectric data using complex electric modulus, alpha(m) has been evaluated for the virgin and annealed samples. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an earlier work, we had proposed a two-band, non-grey radiative transfer model for heat transfer in forehearths with simultaneous optically thick and thin approximations for molten glass interiors and at boundaries. Here using the same model, the radiative interaction of the top-crown and bottom-refractory walls with interior layers of shallow molten glass is studied by varying the wall emissivities. The forehearth exit temperature profiles for higher wall emissivities (0.9) show better conditioning of the glass for white flint glasses (optically thin).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along horizontal surfaces with variable heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the effect of confining pressure on the mechanical behavior of granular materials from micromechanical considerations starting from the grain scale level, based on the results of numerically simulated tests on disc assemblages using discrete element modeling (DEM). The two macro parameters which are influenced by the increase in confining pressure are stiffness (increases) and volume change (decreases). The lateral strain coefficient (Poisson's ratio) at the beginning of the test is more or less constant. The angle of internal friction slightly decreases with increase in confining pressure. The numerical results of disc assemblages indicate very clearly a non-linear Mohr-Coulomb failure envelope with increase in confining pressure. The increase in average coordination number and accompanying decrease of fabric anisotropy reduce the shear strength at higher confining pressures. Micromechanical explanations of the macroscopic behavior are presented in terms of the force and fabric anisotropy coefficients. (C) 1999 Elsevier Science Ltd. AII rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of free convection in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall temperature or heat flux distribution. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) results of autoignition in anon-premixed medium under an isotropic, homogeneous, and decaying turbulence are presented. The initial mixture consists of segregated fuel parcels randomly distributed within warm air, and the entire medium is subjected to a three-dimensional turbulence. Chemical kinetics is modeled by a four-step reduced reaction mechanism for autoignition of n-heptane/air mixture. Thus, this work overcomes the principal limitations of a previous contribution of the authors on two-dimensional DNS of autoignition with a one-step reaction model. Specific attention is focused on the differences in the effects of two- and three-dimensional turbulence on autoignition characteristics. The three-dimensional results show that ignition spots are most likely to originate at locations jointly corresponding to the most reactive mixture fraction and low scalar dissipation rate. Further, these ignition spots are found to originate at locations corresponding to the core of local vortical structures, and after ignition, the burning gases move toward the vortex periphery Such a movement is explained as caused by the cyclostrophic imbalance developed when the local gas density is variable. These results lead to the conclusion that the local ignition-zone structure does not conform to the classical stretched flamelet description. Parametric studies show that the ignition delay time decreases with an increase in turbulence intensity. Hence, these three-dimensional simulation results resolve the discrepancy between trends in experimental data and predictions from DNSs of two-dimensional turbulence. This qualitative difference between DNS results from three- and two-dimensional simulations is discussed and attributed to the effect of vortex stretching that is present in the former, but not in the latter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current analytical work on the effect of convection on the late stages of spinodal decomposition in liquids is briefly described. The morphology formed during the spinodal decomposition process depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport has a significant effect on the scaling laws in the late-stage coarsening of droplets in translational or shear flows. In addition, convective transport could result in an attractive interaction between non-Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near-symmetric quench was analysed using an area distribution function, which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to time t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tendency of granular materials in rapid shear ow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear flow of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental investigations into the effect of temperature on conversion of NO in the presence of hydrocarbons (ethylene, acetylene and n-hexane) are presented. An AC energized dielectric barrier discharge reactor was used as the plasma reactor. The experiments were carried out at different temperatures up to 200 degreesC. The discharge powers were measured at all the temperatures. The discharge power was found to increase with temperature. NO conversion in the presence of ethylene and n-hexane was better than that of acetylene at all temperatures. The addition of acetylene at room temperature showed no better conversion of NO compared to no additive case. While at higher temperatures, it could enhance the conversion of NO. A slight enhancement in NO and NOx removal was observed in the presence of water vapor. (C) 2003 Elsevier Science B.V. All rights reserved.