126 resultados para motion perspective
Resumo:
Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.
Resumo:
A coupled methodology for simulating the simultaneous growth and motion of equiaxed dendrites in solidifying melts is presented. The model uses the volume-averaging principles and combines the features of the enthalpy method for modeling growth, immersed boundary method for handling the rigid solid-liquid interfaces, and the volume of fluid method for tracking the advection of the dendrite. The algorithm also performs explicit-implicit coupling between the techniques used. A two-dimensional framework with incompressible and Newtonian fluid is considered. Validation with available literature is performed and dendrite growth in the presence of rotational and buoyancy driven flow fields is studied. It is seen that the flow fields significantly alter the position and morphology of the dendrites. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Motion analysis is very essential in sport activities to enhance the performance of an athlete and to ensure the correctness of regimes. Expensive methods of motion analysis involving the use of sophisticated technology has led to limited application of motion analysis in sports. Towards this, in this paper we have integrated a low-cost method for motion analysis using three axis accelerometer, three axis magnetometer and microcontroller which are very accurate and easy to use. Seventeen male subjects performed two experiments, standing short jumps and long jumps over a wide range of take-off angles. During take-off and landing the acceleration and angles at different joints of the body are recorded using accelerometers and magnetometers, and the data is captured using Lab VIEW software. Optimum take-off angle in these jumps are calculated using the recorded data, to identify the optimum projection angle that maximizes the distance achieved in a jump. The results obtained for optimum take off angle in short jump and long jump is in agreement with those obtained using other methodologies and theoretical calculations assuming jump to be a projectile motion. The impact force (acceleration) is also analysed and is found to progressively decrease from foot to neck.
Resumo:
Movement in animal groups is highly varied and ranges from seemingly disordered motion in swarms to coordinated aligned motion in flocks and schools. These social interactions are often thought to reduce risk from predators, despite a lack of direct evidence. We investigated risk-related selection for collective motion by allowing real predators ( bluegill sunfish) to hunt mobile virtual prey. By fusing simulated and real animal behavior, we isolated predator effects while controlling for confounding factors. Prey with a tendency to be attracted toward, and to align direction of travel with, near neighbors tended to form mobile coordinated groups and were rarely attacked. These results demonstrate that collective motion could evolve as a response to predation, without prey being able to detect and respond to predators.
Resumo:
In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.
Resumo:
Transcription is the most fundamental step in gene expression in any living organism. Various environmental cues help in the maturation of core RNA polymerase (RNAP; alpha(2)beta beta'omega) with different sigma-factors, leading to the directed recruitment of RNAP to different promoter DNA sequences. Thus it is essential to determine the sigma-factors that affect the preferential partitioning of core RNAP among various a-actors, and the role of sigma-switching in transcriptional gene regulation. Further, the macromolecular assembly of holo RNAP takes place in an extremely crowded environment within a cell, and thus far the kinetics and thermodynamics of this molecular recognition process have not been well addressed. In this study we used a site-directed bioaffinity immobilization method to evaluate the relative binding affinities of three different Escherichia coli sigma-factors to the same core RNAP with variations in temperature and ionic strength while emulating the crowded cellular milieu. Our data indicate that the interaction of core RNAP-sigma is susceptible to changes in external stimuli such as osmolytic and thermal stress, and the degree of susceptibility varies among different sigma-factors. This allows for a reversible sigma-switching from housekeeping factors to alternate sigma-factors when the organism senses a change in its physiological conditions.
Resumo:
This paper is a review prepared for the second Marseille Colloquium on the mechanics of turbulence, held in 2011, 50 years after the first. The review covers recent developments in our understanding of the large-scale dynamics of cumulus cloud flows and of the atmospheric boundary layer in the low-wind convective regime that is often encountered in the tropics. It has recently been shown that a variety of cumulus cloud forms and life cycles can be experimentally realized in the laboratory, with the transient diabatic plume taken as the flow model for a cumulus cloud. The plume is subjected to diabatic heating scaled to be dynamically similar to heat release from phase changes in clouds. The experiments are complemented by exact numerical solutions of the Navier-Stokes-Boussinesq equations for plumes with scaled off-source heating. The results show that the Taylor entrainment coefficient first increases with heating, reaches a positive maximum and then drops rapidly to zero or even negative values. This reduction in entrainment is a consequence of structural changes in the flow, smoothing out the convoluted boundaries in the non-diabatic plume, including the tongues engulfing the ambient flow. This is accompanied by a greater degree of mixedness in the core flow because of lower dilution by the ambient fluid. The cloud forms generated depend strongly on the history of the diabatic heating profile in the vertical direction. The striking effects of heating on the flow are attributable to the operation of the baroclinic torque due to the temperature field. The mean baroclinic torque is shown to peak around a quasi-cylindrical sheet situated midway between the axis of the flow and the edges. This torque is shear-enhancing and folds down the engulfment tongues. The increase in mixedness can be traced to an explosive growth in the enstrophy, triggered by a strong fluctuating baroclinic torque that acts as a source, especially at the higher wave numbers, thus enhancing the mixedness. In convective boundary layers field measurements show that, under conditions prevailing in the tropics, the eddy fluxes of momentum and energy do not follow the Monin-Obukhov similarity. Instead, the eddy momentum flux is found to be linear in the wind speed at low winds; and the eddy heat flux is, to a first approximation, governed by free convection laws, with wind acting as a small perturbation on a regime of free convection. A new boundary layer code, based on heat flux scaling rather than wall-stress scaling, shows promising improvements in predictive skills of a general circulation model.
Resumo:
Two models for AF relaying, namely, fixed gain and fixed power relaying, have been extensively studied in the literature given their ability to harness spatial diversity. In fixed gain relaying, the relay gain is fixed but its transmit power varies as a function of the source-relay channel gain. In fixed power relaying, the relay transmit power is fixed, but its gain varies. We revisit and generalize the fundamental two-hop AF relaying model. We present an optimal scheme in which an average power constrained AF relay adapts its gain and transmit power to minimize the symbol error probability (SEP) at the destination. Also derived are insightful and practically amenable closed-form bounds for the optimal relay gain. We then analyze the SEP of MPSK, derive tight bounds for it, and characterize the diversity order for Rayleigh fading. Also derived is an SEP approximation that is accurate to within 0.1 dB. Extensive results show that the scheme yields significant energy savings of 2.0-7.7 dB at the source and relay. Optimal relay placement for the proposed scheme is also characterized, and is different from fixed gain or power relaying. Generalizations to MQAM and other fading distributions are also discussed.
Resumo:
We investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (C-PL). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible (R e << 1), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number (Re -> 0), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite Re, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (C-PL = 0.37) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; C-PL = 0.42 and 0.50 for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for Re -> infinity. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.
Resumo:
We address the classical problem of delta feature computation, and interpret the operation involved in terms of Savitzky- Golay (SG) filtering. Features such as themel-frequency cepstral coefficients (MFCCs), obtained based on short-time spectra of the speech signal, are commonly used in speech recognition tasks. In order to incorporate the dynamics of speech, auxiliary delta and delta-delta features, which are computed as temporal derivatives of the original features, are used. Typically, the delta features are computed in a smooth fashion using local least-squares (LS) polynomial fitting on each feature vector component trajectory. In the light of the original work of Savitzky and Golay, and a recent article by Schafer in IEEE Signal Processing Magazine, we interpret the dynamic feature vector computation for arbitrary derivative orders as SG filtering with a fixed impulse response. This filtering equivalence brings in significantly lower latency with no loss in accuracy, as validated by results on a TIMIT phoneme recognition task. The SG filters involved in dynamic parameter computation can be viewed as modulation filters, proposed by Hermansky.
Resumo:
We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.
Resumo:
In this paper we present a segmentation algorithm to extract foreground object motion in a moving camera scenario without any preprocessing step such as tracking selected features, video alignment, or foreground segmentation. By viewing it as a curve fitting problem on advected particle trajectories, we use RANSAC to find the polynomial that best fits the camera motion and identify all trajectories that correspond to the camera motion. The remaining trajectories are those due to the foreground motion. By using the superposition principle, we subtract the motion due to camera from foreground trajectories and obtain the true object-induced trajectories. We show that our method performs on par with state-of-the-art technique, with an execution time speed-up of 10x-40x. We compare the results on real-world datasets such as UCF-ARG, UCF Sports and Liris-HARL. We further show that it can be used toper-form video alignment.
Resumo:
In a networked society, governing advocacy groups and networks through decentralized systems of policy implementation has been the interest of governance network literature. This paper addresses the topic of governing networks in the context of Indian agrarian societies by taking the case example of a welfare scheme for the Indian rural poor. We explore context-specific regulatory dynamics through the situated agent based architectural framework. The effects of various regulatory strategies that can be adopted by governing node are tested under various action arenas through experimental design. Results show the impact of regulatory strategies on the resource dependencies and asymmetries in the network relationships. This indicates that the optimal feasible regulatory strategy in networked society is institutionally rational and is context dependent. Further, we show that situated MAS architecture is a natural fit for institutional understanding of the dynamics (Ostrom et al. in Rules, games, and common-pool resources, 1994).
Resumo:
For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.