130 resultados para model performance
Resumo:
The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless. When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.
Resumo:
This paper proposes a new straight forward technique based on dynamic inversion, which is applied for tracking the pilot commands in high performance aircrafts.Pilot commands assumed in longitudinal mode are normal acceleration and total velocity(while roll angle and lateral acceleration are maintained at zero). In lateral mode, roll rate and total velocity are used as pilot commands (while climb rate and lateral acceleration are maintained at zero). Ensuring zero lateral acceleration leads to a better turn co-ordination. A six degree-of-freedom model of F-16 aircraft is used for both control design as well as simulation studies. Promising results are obtained which are found to be superior as compared to an existing approach (which is also based on dynamic inversion). The new approach has two potential benefits, namely reduced oscillatory response and reduced control magnitude. Another advantage of this approach is that it leads to a significant reduction of tuning parameters in the control design process.
Resumo:
Community Climate System Model (CCSM) is a Multiple Program Multiple Data (MPMD) parallel global climate model comprising atmosphere, ocean, land, ice and coupler components. The simulations have a time-step of the order of tens of minutes and are typically performed for periods of the order of centuries. These climate simulations are highly computationally intensive and can take several days to weeks to complete on most of today’s multi-processor systems. ExecutingCCSM on grids could potentially lead to a significant reduction in simulation times due to the increase in number of processors. However, in order to obtain performance gains on grids, several challenges have to be met. In this work,we describe our load balancing efforts in CCSM to make it suitable for grid enabling.We also identify the various challenges in executing CCSM on grids. Since CCSM is an MPI application, we also describe our current work on building a MPI implementation for grids to grid-enable CCSM.
Resumo:
Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points.
Resumo:
In this paper we develop and numerically explore the modeling heuristic of using saturation attempt probabilities as state dependent attempt probabilities in an IEEE 802.11e infrastructure network carrying packet telephone calls and TCP controlled file downloads, using enhanced distributed channel access (EDCA). We build upon the fixed point analysis and performance insights. When there are a certain number of nodes of each class contending for the channel (i.e., have nonempty queues), then their attempt probabilities are taken to be those obtained from saturation analysis for that number of nodes. Then we model the system queue dynamics at the network nodes. With the proposed heuristic, the system evolution at channel slot boundaries becomes a Markov renewal process, and regenerative analysis yields the desired performance measures. The results obtained from this approach match well with ns2 simulations. We find that, with the default IEEE 802.11e EDCA parameters for AC 1 and AC 3, the voice call capacity decreases if even one file download is initiated by some station. Subsequently, reducing the voice calls increases the file download capacity almost linearly (by 1/3 Mbps per voice call for the 11 Mbps PHY)
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.
Resumo:
Modeling the performance behavior of parallel applications to predict the execution times of the applications for larger problem sizes and number of processors has been an active area of research for several years. The existing curve fitting strategies for performance modeling utilize data from experiments that are conducted under uniform loading conditions. Hence the accuracy of these models degrade when the load conditions on the machines and network change. In this paper, we analyze a curve fitting model that attempts to predict execution times for any load conditions that may exist on the systems during application execution. Based on the experiments conducted with the model for a parallel eigenvalue problem, we propose a multi-dimensional curve-fitting model based on rational polynomials for performance predictions of parallel applications in non-dedicated environments. We used the rational polynomial based model to predict execution times for 2 other parallel applications on systems with large load dynamics. In all the cases, the model gave good predictions of execution times with average percentage prediction errors of less than 20%
Resumo:
The effect of structural and aerodynamic uncertainties on the performance predictions of a helicopter is investigated. An aerodynamic model based on blade element and momentum theory is used to predict the helicopter performance. The aeroelastic parameters, such as blade chord, rotor radius, two-dimensional lift-curve slope, blade profile drag coefficient, rotor angular velocity, blade pitch angle, and blade twist rate per radius of the rotor, are considered as random variables. The propagation of these uncertainties to the performance parameters, such as thrust coefficient and power coefficient, are studied using Monte Carlo Simulations. The simulations are performed with 100,000 samples of structural and aerodynamic uncertain variables with a coefficient of variation ranging from 1 to 5%. The scatter in power predictions in hover, axial climb, and forward flight for the untwisted and linearly twisted blades is studied. It is found that about 20-25% excess power can be required by the helicopter relative to the determination predictions due to uncertainties.
Resumo:
The Effective Exponential SNR Mapping (EESM) is an indispensable tool for analyzing and simulating next generation orthogonal frequency division multiplexing (OFDM) based wireless systems. It converts the different gains of multiple subchannels, over which a codeword is transmitted, into a single effective flat-fading gain with the same codeword error rate. It facilitates link adaptation by helping each user to compute an accurate channel quality indicator (CQI), which is fed back to the base station to enable downlink rate adaptation and scheduling. However, the highly non-linear nature of EESM makes a performance analysis of adaptation and scheduling difficult; even the probability distribution of EESM is not known in closed-form. This paper shows that EESM can be accurately modeled as a lognormal random variable when the subchannel gains are Rayleigh distributed. The model is also valid when the subchannel gains are correlated in frequency or space. With some simplifying assumptions, the paper then develops a novel analysis of the performance of LTE's two CQI feedback schemes that use EESM to generate CQI. The comprehensive model and analysis quantify the joint effect of several critical components such as scheduler, multiple antenna mode, CQI feedback scheme, and EESM-based feedback averaging on the overall system throughput.
Resumo:
Abstract | The importance of well-defined inorganic porous nanostructured materials in the context of biotechnological applications such as drug delivery and biomolecular sensing is reviewed here in detail. Under optimized conditions, the confinement of “bio”-relevant molecules such as pharmaceutical drugs, enzymes or proteins inside such inorganic nanostructures may be remarkably beneficial leading to enhanced molecular stability, activity and performance. From the point of view of basic research, molecular confinement inside nanostructures poses several formidable and intriguing problems of statistical mechanics at the mesoscopic scale. The theoretical comprehension of such non-trivial issues will not only aid in the interpretation of observed phenomena but also help in designing better inorganic nanostructured materials for biotechnological applications.
Resumo:
A nonlinear suboptimal guidance law is presented in this paper for successful interception of ground targets by air-launched missiles and guided munitions. The main feature of this guidance law is that it accurately satisfies terminal impact angle constraints in both azimuth as well as elevation simultaneously. In addition, it is capable of hitting the target with high accuracy as well as minimizing the lateral acceleration demand. The guidance law is synthesized using recently developed model predictive static programming (MPSP). Performance of the proposed MPSP guidance is demonstrated using three-dimensional (3-D) nonlinear engagement dynamics by considering stationary, moving, and maneuvering targets. Effectiveness of the proposed guidance has also been verified by considering first. order autopilot lag as well as assuming inaccurate information about target maneuvers. Multiple munitions engagement results are presented as well. Moreover, comparison studies with respect to an augmented proportional navigation guidance (which does not impose impact angle constraints) as well as an explicit linear optimal guidance (which imposes the same impact angle constraints in 3-D) lead to the conclusion that the proposed MPSP guidance is superior to both. A large number of randomized simulation studies show that it also has a larger capture region.
Resumo:
This paper proposes a Petri net model for a commercial network processor (Intel iXP architecture) which is a multithreaded multiprocessor architecture. We consider and model three different applications viz., IPv4 forwarding, network address translation, and IP security running on IXP 2400/2850. A salient feature of the Petri net model is its ability to model the application, architecture and their interaction in great detail. The model is validated using the Intel proprietary tool (SDK 3.51 for IXP architecture) over a range of configurations. We conduct a detailed performance evaluation, identify the bottleneck resource, and propose a few architectural extensions and evaluate them in detail.
Resumo:
Surface-potential-based compact charge models for symmetric double-gate metal-oxide-semiconductor field-effect transistors (SDG-MOSFETs) are based on the fundamental assumption of having equal oxide thicknesses for both gates. However, for practical devices, there will always be some amount of asymmetry between the gate oxide thicknesses due to process variations and uncertainties, which can affect device performance significantly. In this paper, we propose a simple surface-potential-based charge model, which is applicable for tied double-gate MOSFETs having same gate work function but could have any difference in gate oxide thickness. The proposed model utilizes the unique so-far-unexplored quasi-linear relationship between the surface potentials along the channel. In this model, the terminal charges could be computed by basic arithmetic operations from the surface potentials and applied biases, and thus, it could be implemented in any circuit simulator very easily and extendable to short-channel devices. We also propose a simple physics-based perturbation technique by which the surface potentials of an asymmetric device could be obtained just by solving the input voltage equation of SDG devices for small asymmetry cases. The proposed model, which shows excellent agreement with numerical and TCAD simulations, is implemented in a professional circuit simulator through the Verilog-A interface and demonstrated for a 101-stage ring oscillator simulation. It is also shown that the proposed model preserves the source/drain symmetry, which is essential for RF circuit design.
Resumo:
Thermoacoustic engines convert heat energy into high amplitude sound waves, which is used to drive thermoacoustic refrigerator or pulse tube cryocoolers by replacing the mechanical pistons such as compressors. The increasing interest in thermoacoustic technology is of its potentiality of no exotic materials, low cost and high reliability compared to vapor compression refrigeration systems. The experimental setup has been built based on the linear thermoacoustic model and some simple design parameters. The engines produce acoustic energy at the temperature difference of 325-450 K imposed along the stack of the system. This work illustrates the influence of stack parameters such as plate thickness (PT) and plate spacing (PS) with resonator length on the performance of thermoacoustic engine, which are measured in terms of onset temperature difference, resonance frequency and pressure amplitude using air as a working fluid. The results obtained from the experiments are in good agreement with the theoretical results from DeltaEc. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We address the problem of robust formant tracking in continuous speech in the presence of additive noise. We propose a new approach based on mixture modeling of the formant contours. Our approach consists of two main steps: (i) Computation of a pyknogram based on multiband amplitude-modulation/frequency-modulation (AM/FM) decomposition of the input speech; and (ii) Statistical modeling of the pyknogram using mixture models. We experiment with both Gaussian mixture model (GMM) and Student's-t mixture model (tMM) and show that the latter is robust with respect to handling outliers in the pyknogram data, parameter selection, accuracy, and smoothness of the estimated formant contours. Experimental results on simulated data as well as noisy speech data show that the proposed tMM-based approach is also robust to additive noise. We present performance comparisons with a recently developed adaptive filterbank technique proposed in the literature and the classical Burg's spectral estimator technique, which show that the proposed technique is more robust to noise.