78 resultados para metals flammability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles calculations, we establish the existence of highly-stable polymorphs of hcp metals (Ti, Mg, Be, La and Y) with nanoscale structural periodicity. They arise from heterogeneous deformation of the hcp structure occurring in response to large shear stresses localized at the basal planes separated by a few nanometers. Through Landau theoretical analysis, we show that their stability derives from nonlinear coupling between strains at different length scales. Such multiscale hyperelasticity and long-period structures constitute a new mechanism of size-dependent plasticity and its enhancement in nanoscale hcp metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study Majorana modes and transport in one-dimensional systems with a p-wave superconductor (SC) and normal metal leads. For a system with an SC lying between two leads, it is known that there is a Majorana mode at the junction between the SC and each lead. If the p-wave pairing Delta changes sign or if a strong impurity is present at some point inside the SC, two additional Majorana modes appear near that point. We study the effect of all these modes on the sub-gap conductance between the leads and the SC. We derive an analytical expression as a function of Delta and the length L of the SC for the energy shifts of the Majorana modes at the junctions due to hybridization between them; the shifts oscillate and decay exponentially as L is increased. The energy shifts exactly match the location of the peaks in the conductance. Using bosonization and the renormalization group method, we study the effect of interactions between the electrons on Delta and the strengths of an impurity inside the SC or the barriers between the SC and the leads; this in turn affects the Majorana modes and the conductance. Finally, we propose a novel experimental realization of these systems, in particular of a system where Delta changes sign at one point inside the SC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using in situ, high-speed imaging of a hard wedge sliding against pure aluminum, and image analysis by particle image velocimetry, the deformation field in sliding is mapped at high resolution. This model system is representative of asperity contacts on engineered surfaces and die-workpiece contacts in deformation and machining processes. It is shown that large, uniform plastic strains of 1-5 can be imposed at the Al surface, up to depths of 500 mu m, under suitable sliding conditions. The spatial strain and strain rate distributions are significantly influenced by the initial deformation state of the Al, e.g., extent of work hardening, and sliding incidence angle. Uniform straining occurs only under conditions of steady laminar flow in the metal. Large pre-strains and higher sliding angles promote breakdown in laminar flow due to surface fold formation or flow localization in the form of shear bands, thus imposing limits on uniform straining by sliding. Avoidance of unsteady sliding conditions, and selection of parameters like sliding angle, thus provides a way to control the deformation field. Key characteristics of the sliding deformation such as strain and strain rate, laminar flow, folding and prow formation are well predicted by finite element simulation. The deformation field provides a quantitative basis for interpreting wear particle formation. Implications for engineering functionally graded surfaces, sliding wear and ductile failure in metals are discussed.