87 resultados para male representation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several anuran species use multimodal signals to communicate in diverse social contexts. Our study describes acoustic and visual behaviours of the Small Torrent Frog (Micrixalus aff. saxicola), a diurnal frog endemic to the Western Ghats of India. During agonistic interactions males display advertisement calls, foot-flagging and tapping (foot lifting) behaviours to signal the readiness to defend perching sites in perennial streams. Results from a quantitative video analysis of male-male interactions indicate that foot-flagging displays were used as directional signals toward the opponent male, but were less abundant than calls. The acoustic and visual signals were not functionally linked. The call of Micrixalus aff. saxicola thereby did not act as an alert signal. Analysis of behavioural transitions revealed that kicking behaviours (physical attacks) significantly elicited kicks from interacting males. We suggest that foot-flagging displays ritualized from this frequently observed fighting technique to reduce physical attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse representation based classification (SRC) is one of the most successful methods that has been developed in recent times for face recognition. Optimal projection for Sparse representation based classification (OPSRC)1] provides a dimensionality reduction map that is supposed to give optimum performance for SRC framework. However, the computational complexity involved in this method is too high. Here, we propose a new projection technique using the data scatter matrix which is computationally superior to the optimal projection method with comparable classification accuracy with respect OPSRC. The performance of the proposed approach is benchmarked with various publicly available face database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male takeover and infanticide are a widespread phenomenon among non-human primates, observed mostly in species with a relatively longer lactation in relation to gestation. In this study, we report for the first time an episode of male takeover and infanticide, and the rarely reported occurrence of an all-male band and female dispersal, in Nilgiri langurs, Semnopithecus johnii, in the Western Ghats, India. The new male was a member of an all-male band. After the takeover, the resident male and 3 juvenile males left the group and joined the all-male band. A female whose infant was killed was found missing after some days. There were significant changes in the patterns of social interactions among the resident group females soon after the male takeover, wherein the females spent less time on social interactions as compared to before and after the episode of takeover. The new male rarely interacted with the females soon after the takeover. We also observed that the resident group shifted its home range to a poorer quality habitat. (C) 2014 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic rangerfinders are a promising technology for accurate proximity detection, a critical requirement for many emerging mobile computing applications. While state-of-the-art systems deliver robust ranging performance, the computational intensiveness of their detection mechanism expedites the energy depletion of the associated devices that are typically powered by batteries. The contribution of this article is fourfold. First, it outlines the common factors that are important for ranging. Second, it presents a review of acoustic rangers and identifies their potential problems. Third, it explores the design of an information processing framework based on sparse representation that could potentially address existing challenges, especially for mobile devices. Finally, it presents mu-BeepBeep: a low energy acoustic ranging service for mobile devices, and empirically evaluates its benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual tracking is an important task in various computer vision applications including visual surveillance, human computer interaction, event detection, video indexing and retrieval. Recent state of the art sparse representation (SR) based trackers show better robustness than many of the other existing trackers. One of the issues with these SR trackers is low execution speed. The particle filter framework is one of the major aspects responsible for slow execution, and is common to most of the existing SR trackers. In this paper,(1) we propose a robust interest point based tracker in l(1) minimization framework that runs at real-time with performance comparable to the state of the art trackers. In the proposed tracker, the target dictionary is obtained from the patches around target interest points. Next, the interest points from the candidate window of the current frame are obtained. The correspondence between target and candidate points is obtained via solving the proposed l(1) minimization problem. In order to prune the noisy matches, a robust matching criterion is proposed, where only the reliable candidate points that mutually match with target and candidate dictionary elements are considered for tracking. The object is localized by measuring the displacement of these interest points. The reliable candidate patches are used for updating the target dictionary. The performance and accuracy of the proposed tracker is benchmarked with several complex video sequences. The tracker is found to be considerably fast as compared to the reported state of the art trackers. The proposed tracker is further evaluated for various local patch sizes, number of interest points and regularization parameters. The performance of the tracker for various challenges including illumination change, occlusion, and background clutter has been quantified with a benchmark dataset containing 50 videos. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a general theory of Markov chains realizable as random walks on R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Mobius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents an accurate steady-state phasor model for a doubly fed induction machine. The drawback of existing steady-state phasor model is discussed. In particular, the inconsistency of existing equivalent model with respect to reactive power flows when operated at supersynchronous speeds is highlighted. Relevant mathematical basis for the proposed model is presented and its validity is illustrated on a 2-MW doubly fed induction machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elaborate male traits with no apparent adaptive value may have evolved through female mate discrimination. Tusks are an elaborate male-only trait in the Asian elephant that could potentially influence female mate choice. We examined the effect of male body size, tusk possession and musth status on female mate choice in an Asian elephant population. Large/musth males received positive responses from oestrous females towards courtship significantly more often than did small/non-musth males. Young, tusked non-musth males attempted courtship significantly more often than their tuskless peers, and received more positive responses (though statistically insignificant) than did tuskless males. A positive response did not necessarily translate into mating because of mate-guarding by a dominant male. Female elephants appear to choose mates based primarily on traits such as musth that signal direct fertility benefits through increased sperm received than for traits such as tusks that may signal only indirect fitness benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have proposed an anomaly detection algorithm based on Histogram of Oriented Motion Vectors (HOMV) 1] in sparse representation framework. Usual behavior is learned at each location by sparsely representing the HOMVs over learnt normal feature bases obtained using an online dictionary learning algorithm. In the end, anomaly is detected based on the likelihood of the occurrence of sparse coefficients at that location. The proposed approach is found to be robust compared to existing methods as demonstrated in the experiments on UCSD Ped1 and UCSD Ped2 datasets.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.