141 resultados para local validation
Resumo:
An attempt has been made to describe the glass forming ability (GFA) of liquid alloys, using the concepts of the short range order (SRO) and middle range order (MRO) characterizing the liquid structure.A new approach to obtain good GFA of liquid alloys is based on the following four main factors: (1) formation of new SRO and competitive correlation with two or more kinds of SROs for crystallization, (2) stabilization of dense random packing by interaction between different types of SRO, (3) formation of stable cluster (SC) or middle range order (MRO) by harmonious coupling of SROs, and (4) difference between SRO characterizing the liquid structure and the near-neighbor environment in the corresponding equilibrium crystalline phases. The atomic volume mismatch estimated from the cube of the atomic radius was found to be a close relation with the minimum solute concentration for glass formation. This empirical guideline enables us to provide the optimum solute concentration for good GFA in some ternary alloys. Model structures, denoted by Bernal type and the Chemical Order type, were again tested in the novel description for the glass structure as a function of solute concentration. We illustrated the related energetics of the completion between crystal embryo and different types of SRO. Recent systematic measurements also provide that thermal diffusivity of alloys in the liquid state may be a good indicator of their GFA.
Resumo:
Deviation from local equilibrium between Fe–Ni alloy and (Fe,Ni)TiO3 solid solution in the reaction–diffusion zone of the Fe–NiTiO3 couple at 1273 K is evaluated by comparing the measured compositions in the zone with experimentally determined equilibrium tie-lines. The deviation is quantified by computing the Gibbs energy change for the reaction, Fe + NiTiO3 → FeTiO3 + Ni, from measured compositions in the zone and activity data available in the literature. Except near the extremities of the zone, the computed Gibbs energy change is constant, 8.2 kJ mol−1 higher than the standard Gibbs energy change for the reaction.
Resumo:
Factors influencing the effectiveness of democratic institutions and to that effect processes involved at the local governance level have been the interest in the literature, given the presence of various advocacies and networks that are context-specific. This paper is motivated to understand the adaptability issues related to governance given these complexities through a comparative analysis of diversified regions. We adopted a two-stage clustering along with regression methodology for this purpose. The results show that the formation of advocacies and networks depends on the context and institutional framework. The paper concludes by exploring different strategies and dynamics involved in network governance and insists on the importance of governing the networks for structural reformation through regional policy making.
Resumo:
Process control rules may be specified using decision tables. Such a specification is superior when logical decisions to be taken in control dominate. In this paper we give a method of detecting redundancies, incompleteness, and contradictions in such specifications. Using such a technique thus ensures the validity of the specifications.
Resumo:
We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.
Resumo:
A transient flame simulation tool based on unsteady Reynolds average Navier Stokes (RANS) is characterized for stationary and nonstationary flame applications with a motivation of performing computationally affordable flame stability studies. Specifically, the KIVA-3V code is utilized with incorporation of a recently proposed modified eddy dissipation concept for simulating turbulence-chemistry interaction along with a model for radiation loss. Detailed comparison of velocities, turbulent kinetic energies, temperature, and species are made with the experimental data of the turbulent, non-premixed DLR_A CH4/H-2/N-2 jet flame. The comparison shows that the model is able to predict flame structure very well. The effect of some of the modeling assumptions is assessed, and strategies to model a stationary diffusion flame are recommended. Unsteady flame simulation capabilities of the numerical model are assessed by simulating an acoustically excited, experimental, oscillatory H-2-air diffusion flame. Comparisons are made with oscillatory velocity field and OH plots, and the numerical code is observed to predict transient flame structure well.
Resumo:
In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanotube are studied with consideration of the surface effects as well as the non-local small scale effects. Non-local elasticity theory is used to derive the general governing differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina nanotube with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties (surface integrated residual stress and surface integrated modulus) on the flexural wave characteristics of anodic nanotubes are more significant. It has been found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. It has also been shown that, with consideration of surface effects the flexural wavenumbers are under compressive nature. The effect of the small scale and the size of the nanotube on wave dispersion properties are also captured in the present work. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.
Resumo:
In this Letter, we examine magnetization in double- and zero-quantum reservoirs of an ensemble of spin-1/2 nuclei and describe their role in determining the sensitivity of a class of separated local field NMR experiments based on Hartmann-Hahn cross-polarization. We observe that for the liquid crystal system studied, a large dilute spin-polarization, obtained initially by the use of adiabatic cross-polarization, can enhance the sensitivity of the above experiment. The signal enhancement factors, however, are found to vary and depend on the local dynamics. The experimental results have been utilized to obtain the local order-parameters of the system. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include alpha-helices, beta-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 angstrom. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-beta class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving beta-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare beta-turns of type I' and II' are also identified as preferred sites for insertions.
Resumo:
Let be a smooth real surface in and let be a point at which the tangent plane is a complex line. How does one determine whether or not is locally polynomially convex at such a p-i.e. at a CR singularity? Even when the order of contact of with at p equals 2, no clean characterisation exists; difficulties are posed by parabolic points. Hence, we study non-parabolic CR singularities. We show that the presence or absence of Bishop discs around certain non-parabolic CR singularities is completely determined by a Maslov-type index. This result subsumes all known facts about Bishop discs around order-two, non-parabolic CR singularities. Sufficient conditions for Bishop discs have earlier been investigated at CR singularities having high order of contact with . These results relied upon a subharmonicity condition, which fails in many simple cases. Hence, we look beyond potential theory and refine certain ideas going back to Bishop.
Resumo:
The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.