161 resultados para limit equilibrium
Resumo:
In this paper the question of the extent to which truncated heavy tailed random vectors, taking values in a Banach space, retain the characteristic features of heavy tailed random vectors, is answered from the point of view of the central limit theorem.
Resumo:
Analytical solutions to problems in finite elasticity are most often derived using the semi-inverse approach along with the spatial form of the equations of motion involving the Cauchy stress tensor. This procedure is somewhat indirect since the spatial equations involve derivatives with respect to spatial coordinates while the unknown functions are in terms of material coordinates, thus necessitating the use of the chain rule. In this classroom note, we derive compact expressions for the components of the divergence, with respect to orthogonal material coordinates, of the first Piola-Kirchhoff stress tensor. The spatial coordinate system is also assumed to be an orthogonal curvilinear one, although, not necessarily of the same type as the material coordinate system. We show by means of some example applications how analytical solutions can be derived more directly using the derived results.
Resumo:
A systematic assessment of the submodels of conditional moment closure (CMC) formalism for the autoignition problem is carried out using direct numerical simulation (DNS) data. An initially non-premixed, n-heptane/air system, subjected to a three-dimensional, homogeneous, isotropic, and decaying turbulence, is considered. Two kinetic schemes, (1) a one-step and (2) a reduced four-step reaction mechanism, are considered for chemistry An alternative formulation is developed for closure of the mean chemical source term
Resumo:
A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.
Resumo:
We examine the symmetry-breaking transitions in equilibrium shapes of coherent precipitates in two-dimensional (2-D) systems under a plane-strain condition with the principal misfit strain components epsilon(xx)*. and epsilon(yy)*. For systems with cubic elastic moduli, we first show all the shape transitions associated with different values of t = epsilon(yy)*/epsilon(xx)*. We also characterize each of these transitions, by studying its dependence on elastic anisotropy and inhomogeneity. For systems with dilatational misfit (t = 1) and those with pure shear misfit (t = -1), the transition is from an equiaxed shape to an elongated shape, resulting in a break in rotational symmetry. For systems with nondilatational misfit (-1 < t < 1; t not equal 0), the transition involves a break in mirror symmetries normal to the x- and y-axes. The transition is continuous in all cases, except when 0 < t < 1. For systems which allow an invariant line (-1 less than or equal to t < 0), the critical size increases with an increase in the particle stiffness. However, for systems which do not allow an invariant line (0 < t less than or equal to 1), the critical size first decreases, reaches a minimum, and then starts increasing with increasing particle stiffness; moreover, the transition is also forbidden when the particle stiffness is greater than a critical value.
Resumo:
In order to study the memory of the larger eddies in turbulent shear flow, experiments have been conducted on plane turbulent wakes undergoing transition from an initial (carefully prepared) equilibrium state to a different final one, as a result of a nearly impulsive pressure gradient. It is shown that under the conditions of the experiments the equations of motion possess self-preserving solutions in the sense of Townsend (1956), but the observed behaviour of the wake is appreciably different when the pressure gradient is not very small, as the flow goes through a slow relaxation process before reaching final equilibrium. Measurements of the Reynolds stresse show that the approach to a new equilibrium state is exponential, with a relaxation length of the order of 103 momentum thicknesses. It is suggested that a flow satisfying the conditions required by a self-preservation analysis will exhibit equilibrium only if the relaxation length is small compared with a characteristic streamwise length scale of the flow.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
A three-dimensional transient mathematical model (following a fixed-grid enthalpy-based continuum formulation) is used to study the interaction of double-diffusive natural convection and non-equilibrium solidification of a binary mixture in a cubic enclosure cooled from a side. Investigations are carried out for two separate test systems, one corresponding to a typical model "metal-alloy analogue" system and other corresponding to a real metal-alloy system. Due to stronger effects of solutal buoyancy in actual metal-alloy systems than in corresponding analogues, the convective transport mechanisms for the two cases are quite different. However, in both cases, similar elements of three-dimensionality are observed in the curvature and spacing of the projected streamlines. As a result of three-dimensional convective flow patterns, a significant solute macrosegregation is observed across the transverse sections of the cavity, which cannot be captured by two-dimensional simulations. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We study the coverage in sensor networks having two types of nodes, sensor and backbone nodes. Each sensor is capable of transmitting information over relatively small distances. The backbone nodes collect information from the sensors. This information is processed and communicated over an ad-hoc network formed by the backbone nodes,which are capable of transmitting over much larger distances. We consider two modes of deployment of sensors, one a Poisson-Poisson cluster model and the other a dependently-thinned Poisson point process. We deduce limit laws for functionals of vacancy in both models using properties of association for random measures.
Resumo:
Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory based eight-node rectangular plate bending element (MRP8) using integrated Force Method (IFM) are presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are applicable to plate bending problems with square/rectangular boundaries, they reduce the computational time significantly and give more exact solutions. Presented closed form solutions are validated by solving large number of standard square/rectangular plate bending benchmark problems for deflections and moments and the results are compared with those of similar displacement-based eight-node quadrilateral plate bending elements available in the literature. The results are also compared with the exact solutions.