230 resultados para isotope technique
Resumo:
A technique for the measurement of frequency within a cycle of a periodic input is described. This can be useful for quicker measurement of low frequencies.
Resumo:
An asymmetric binary search switching technique for a successive approximation register (SAR) ADC is presented, and trade-off between switching energy and conversion cycles is discussed. Without using any additional switches, the proposed technique consumes 46% less switching energy, for a small input swing (0.5 V-ref (P-P)), as compared to the last reported efficient switching technique in literature for an 8-bit SAR ADC. For a full input swing (2 V-ref (P-P)), the proposed technique consumes 16.5% less switching energy.
Resumo:
A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the ``Linear-Sweep'' frequency mode, while the oscilloscope is operated in the ``Envelope'' acquisition mode. Under these conditions, the acquired envelopes directly correspond to the (input and output signal) spectra, whose ratio yields the amplitude frequency response. The method is easy to configure, automatic, time-efficient, and does not require any external control or interface or programming. This method is ideally suited to impart hands-on experience in sweep frequency response measurements, demonstrate resonance phenomenon in transformer windings, explain the working principle of an impedance analyzer, practically exhibit properties of network functions, and so on. The proposed method is an inexpensive alternative to existing commercial equipment meant for this job and is also an effective teaching aid. Details of its implementation, along with some practical measurements on an actual transformer, are presented.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
A solution precursor plasma spray (SPPS) technique has been used for direct deposition of cerium oxide nanoparticles (CNPs) from various cerium salt solutions as precursors. Solution precursors were injected into the hot zone of a plasma plume to deposit CNP coatings. A numerical study of the droplet injection model has been employed for microstructure development during SPPS. The decomposition of each precursor to cerium oxide was analyzed by thermogravimetric-differential thermal analysis and validated by thermodynamic calculations. The presence of the cerium oxide phase in the coatings was confirmed by X-ray diffraction studies. Transmission electron microscopy studies confirmed nanocrystalline (grain size <14 nm) characteristic of the coatings. X-ray photoelectron spectroscopy studies indicated the presence of a high concentration of Ce3+ (up to 0.32) in the coating prepared by SPPS. The processing and microstructure evolution of cerium oxide coatings with high nonstoichiometry are reported.
Resumo:
A new deep level transient spectroscopy technique is suggested which allows the deep level parameters to be obtained from a single temperature scan. Using large ratio t2/t1 of the measurement gate positions t1 and t2 and analyzing the steep high‐temperature side of the peak, it is demonstrated that the deep level activation energy can be determined with high accuracy.
Resumo:
STABLE-ISOTOPE ratios of carbon in soils or lake sediments1-3 and of oxygen and hydrogen in peats4,5 have been found to reflect past moisture variations and hence to provide valuable palaeoclimate records. Previous applications of the technique to peat have been restricted to temperate regions, largely because tropical climate variations are less pronounced, making them harder to resolve. Here we present a deltaC-13 record spanning the past 20 kyr from peats in the Nilgiri hills, southern India. Because the site is at high altitude (>2,000 m above sea level), it is possible to resolve a clear climate signal. We observe the key climate shifts that are already known to have occurred during the last glacial maximum (18 kyr ago) and the subsequent deglaciation. In addition, we observe an arid phase from 6 to 3.5 kyr ago, and a short, wet phase about 600 years ago. The latter appears to correspond to the Mediaeval Warm Period, which previously was believed to be confined to Europe and North America6,7. Our results therefore suggest that this event may have extended over the entire Northern Hemisphere.
Resumo:
This paper describes a novel mimetic technique of using frequency domain approach and digital filters for automatic generation of EEG reports. Digitized EEG data files, transported on a cartridge, have been used for the analysis. The signals are filtered for alpha, beta, theta and delta bands with digital bandpass filters of fourth-order, cascaded, Butterworth, infinite impulse response (IIR) type. The maximum amplitude, mean frequency, continuity index and degree of asymmetry have been computed for a given EEG frequency band. Finally, searches for the presence of artifacts (eye movement or muscle artifacts) in the EEG records have been made.
Resumo:
A technique for fabrication of thin-film circuits for microwave integrated circuit (MIC) application is presented. This low-cost fabrication technique utilizes laser direct write of copper patterns on alumina substrates. The method obviates the need for photomasks and photolithography. The film deposition mechanism, deposit film analysis, and MIC fabrication sequence are presented. Performance evaluation of MICs fabricated using this technique is also included
Resumo:
The increasing variability in device leakage has made the design of keepers for wide OR structures a challenging task. The conventional feedback keepers (CONV) can no longer improve the performance of wide dynamic gates for the future technologies. In this paper, we propose an adaptive keeper technique called rate sensing keeper (RSK) that enables faster switching and tracks the variation across different process corners. It can switch upto 1.9x faster (for 20 legs) than CONV and can scale upto 32 legs as against 20 legs for CONV in a 130-nm 1.2-V process. The delay tracking is within 8% across the different process corners. We demonstrate the circuit operation of RSK using a 32 x 8 register file implemented in an industrial 130-nm 1.2-V CMOS process. The performance of individual dynamic logic gates are also evaluated on chip for various keeper techniques. We show that the RSK technique gives superior performance compared to the other alternatives such as Conditional Keeper (CKP) and current mirror-based keeper (LCR).
Resumo:
Multilayer lithium tantalate thin films were deposited on Pt-Si Si(111)/SiO2/TiO2/Pt(111)]substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 degrees C) for 15 min. The films are polycrystalline at 650 degrees C and at other annealing conditions below 650 degrees C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 degrees C. These polycrystalline films exhibit spontaneous polarization of 1.5 mu C/cm(2) at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.