167 resultados para hyper-elasticity
Resumo:
In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the elasticity, topological defects, and hydrodynamics of the recently discovered incommensurate smectic (AIC) phase, characterized by two collinear mass density waves of incommensurate spatial frequency. The low-energy long-wavelength excitations of the system can be described by a displacement field u(x) and a ��phason�� field w(x) associated, respectively, with collective and relative motion of the two constituent density waves. We formulate the elastic free energy in terms of these two variables and find that when w=0, its functional dependence on u is identical to that of a conventional smectic liquid crystal, while when u=0, its functional dependence on w is the same as that for the angle variable in a slightly anisotropic XY model. An arbitrariness in the definition of u and w allows a choice that eliminates all relevant couplings between them in the long-wavelength elastic energy. The topological defects of the system are dislocations with nonzero u and w components. We introduce a two-dimensional Burgers lattice for these dislocations, and compute the interaction between them. This has two parts: one arising from the u field that is short ranged and identical to the interaction between dislocations in an ordinary smectic liquid crystal, and one arising from the w field that is long ranged and identical to the logarithmic interaction between vortices in an XY model. The hydrodynamic modes of the AIC include first- and second-sound modes whose direction-dependent velocities are identical to those in ordinary smectics. The sound attenuations have a different direction dependence, however. The breakdown of hydrodynamics found in conventional smectic liquid crystals, with three of the five viscosities diverging as 1/? at small frequencies ?, occurs in these systems as well and is identical in all its details. In addition, there is a diffusive phason mode, not found in ordinary smectic liquid crystals, that leads to anomalously slow mechanical response analogous to that predicted in quasicrystals, but on a far more experimentally accessible time scale.
Resumo:
This paper is concerned with grasping biological cells in aqueous medium with miniature grippers that can also help estimate forces using vision-based displacement measurement and computation. We present the design, fabrication, and testing of three single-piece, compliant miniature grippers with parallel and angular jaw motions. Two grippers were designed using experience and intuition, while the third one was designed using topology optimization with implicit manufacturing constraints. These grippers were fabricated using different manufacturing techniques using spring steel and polydimethylsiloxane ( PDMS). The grippers also serve the purpose of a force sensor. Toward this, we present a vision-based force-sensing technique by solving Cauchy's problem in elasticity using an improved algorithm. We validated this technique at the macroscale, where there was an independent method to estimate the force. In this study, the gripper was used to hold a yeast ball and a zebrafish egg cell of less than 1 mm in diameter. The forces involved were estimated to be about 30 and 10 mN for the yeast ball and the zebrafish egg cell, respectively.
Resumo:
The Winkler spring model is the most convenient representation of soil support in the domain of linear elasticity for framed structure-soil interaction analyses. The closeness of the analytical results obtained using this model with those corresponding to the elastic half-space continuum has been investigated in the past for foundation beams. The findings, however, are not applicable to framed structures founded on beam or strip footings. Moreover, the past investigations employ the concept of characteristic length which does not adequately account for the stiffness contribution of the superstructure. A framed structure on beam foundation can be described parametrically by the ratios of stiffnesses of superstructure and foundation beams to that of soil. For a practical range of soil allowable pressures, the ranges of these relative stiffness ratios have been established. The present study examines the variation between interactive analyses based on Winkler springs with those using the half-space continuum over these ranges of relative stiffness ratios. The findings enable the analyst to undertake a Winkler spring-based-interaction analysis with knowledge of the likely variation of values with those derived for the more computation-intensive half-space continuum.
Resumo:
Hyper-redundant robots are characterized by the presence of a large number of actuated joints, many more than the number required to perform a given task. These robots have been proposed and used for many applications involving avoiding obstacles or, in general, to provide enhanced dexterity in performing tasks. Making effective use of the extra degrees of freedom or resolution of redundancy has been an extensive topic of research and several methods have been proposed in literature. In this paper, we compare three known methods and show that an algorithm based on a classical curve called the tractrix leads to a more 'natural' motion of the hyper-redundant robot, with the displacements diminishing from the end-effector to the fixed base. In addition, since the actuators nearer the base 'see' a greater inertia due to the links farther away, smaller motion of the actuators nearer the base results in better motion of the end-effector as compared to other two approaches. We present simulation and experimental results performed on a prototype eight link planar hyper-redundant manipulator.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
Marked-ball grinding tests were carried out under different grinding conditions and environments. Three types of balls were used, namely, cast hyper steel, high chrome cast iron and EN-31 (forged), which cover a wide range of chemical composition, microstructure and media hardness. The effect of pulp density on ball wear and grinding efficiency was also studied. Relative pulp viscosities at different percent solids for the ore slurry were also determined. As the Kudremukh ore contained about 0.2% pyrite, the effect of addition of pyrite on ball wear was studied separately. Results of marked-ball grinding tests indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. At 70% solids, the best results in terms of reduced ball wear coupled with satisfactory grinding efficiency were obtained. The influence of oxygen on the corrosive wear of grinding balls was increasingly felt only if sulphide minerals such as pyrite were also present in the ore. The various ball materials could be arranged in the following order with respect to their overall wear resistance: high chrome cast iron > EN-31 (forged) > cast hyper steel.Possible ball wear mechanisms involved in the grinding of Kudremukh ore are discussed.
Resumo:
Assuming an entropic origin for phason elasticity in quasicrystals, we derive predictions for the temperature dependence of grain-boundary structure and free energy, the nature of the elastic instability in these systems, and the behavior of sound damping near the instability. We believe that these will provide decisive tests of the entropic model for quasicrystals.
Resumo:
This paper presents the strong nonlocal scale effect on the flexural wave propagation in a monolayer graphene sheet. The graphene is modeled as an isotropic plate of one atom thick. Nonlocal governing equation of motion is derived and wave propagation analysis is performed using spectral analysis. The present analysis shows that the flexural wave dispersion in graphene obtained by local and nonlocal elasticity theories is quite different. The nonlocal elasticity calculation shows that the wavenumber escapes to infinite at certain frequency and the corresponding wave velocity tends to zero at that frequency indicating localization and stationary behavior. This behavior is captured in the spectrum and dispersion curves. The cut-off frequency of flexural wave not only depend on the axial wavenumber but also on the nonlocal scaling parameter. The effect of axial wavenumber on the wave behavior in graphene is also discussed in the present manuscript. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Instability and dewetting engendered by the van der Waals force in soft thin (<100 nm) linear viscoelastic solid (e. g., elastomeric gel) films on uniform and patterned surfaces are explored. Linear stability analysis shows that, although the elasticity of the film controls the onset of instability and the corresponding critical wavelength, the dominant length-scale remains invariant with the elastic modulus of the film. The unstable modes are found to be long-wave, for which a nonlinear long-wave analysis and simulations are performed to uncover the dynamics and morphology of dewetting. The stored elastic energy slows down the temporal growth of instability significantly. The simulations also show that a thermodynamically stable film with zero-frequency elasticity can be made unstable in the presence of physico-chemical defects on the substrate and can follow an entirely different pathway with far fewer holes as compared to the viscous films. Further, the elastic restoring force can retard the growth of a depression adjacent to the hole-rim and thus suppress the formation of satellite holes bordering the primary holes. These findings are in contrast to the dewetting of viscoelastic liquid films where nonzero frequency elasticity accelerates the film rupture and promotes the secondary instabilities. Thus, the zero-frequency elasticity can play a major role in imposing a better-defined long-range order to the dewetted structures by arresting the secondary instabilities. (C) 2011 American Institute of Physics. doi: 10.1063/1.3554748]
Resumo:
Radical catalyzed thiol-ene reaction has become a useful alternative to the Huisgen-type click reaction as it helps to expand the variability in reaction conditions as well as the range of clickable entities. Thus, direct generation of hyper-branched polymers bearing peripheral allyl groups that could be clicked using a variety of functional thiols would be of immense value. A specifically designed AB(2) type monomer, that carries two allyl benzyl ethers groups and one alcohol functionality, was shown to undergo self-condensation under acid-catalyzed melt-transetherification to yield a hyperbranched polyether that carries numerous allyl end-groups. Importantly, it was shown that the kinetics of polymerization is not dramatically affected by the change of the ether unit from previously studied methyl benzyl ether to an allyl benzyl ether. The peripheral allyl groups were readily clicked quantitatively, using a variety of thiols, to generate an hydrocarbon-soluble octadecyl-derivative, amphiphilic systems using 2-mercaptoethanol and chiral amino acid (N-benzoyl cystine) derivatized hyperbranched structures; thus demonstrating the versatility of this novel class of clickable hyperscaffolds. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 49:1735-1744, 2011
Resumo:
This paper deals with the evaluation of the component-laminate load-carrying capacity, i.e., to calculate the loads that cause the failure of the individual layers and the component-laminate as a whole in four-bar mechanism. The component-laminate load-carrying capacity is evaluated using the Tsai-Wu-Hahn failure criterion for various layups. The reserve factor of each ply in the component-laminate is calculated by using the maximum resultant force and the maximum resultant moment occurring at different time steps at the joints of the mechanism. Here, all component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict more quickly and accurately than would otherwise be possible. Local 3-D stress, strain and displacement fields for representative sections in the component-bars are recovered, based on the stress resultants from the 1-D global beam analysis. A numerical example is presented which illustrates the failure of each component-laminate and the mechanism as a whole.
Resumo:
In the present study, a lug joint fitted with an interference fit (oversized) pin is considered with radial through cracks situated at diametrically opposite points perpendicular to the loading direction. A finite element contact stress algorithm is developed with linear elastic assumptions to deal with varying partial contact/separation at the pin-plate interface using a marching solution. Stress Intensity Factor (SIF) at the crack tips is evaluated using the Modified Crack Closure Integral (MCCI) method. The effect of change in crack length and edge distance on the load-contact relation, SIFs and stress distributions are studied. A rigorous plane stress elasticity solution of the pin-plate interface at the crack mouth confirmed the existence of the stress concentration leading to a local peak in the radial stress at the crack mouth and provided a method of estimating it quantitatively. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
An exact three-dimensional elasticity solution has been obtained for an infinitely long, thick transversely isotropic circular cylindrical shell panel, simply supported along the longitudinal edges and subjected to a radial patch load. Using a set of three displacement functions, the boundary value problem is reduced to Bessel's differential equation. Numerical results are presented for different thickness to mean radius ratios and semicentral angles of the shell panel. Classical and first-order shear deformation orthotropic shell theories have been examined in comparison with the present elasticity solution.
Resumo:
CD-ROMs have proliferated as a distribution media for desktop machines for a large variety of multimedia applications (targeted for a single-user environment) like encyclopedias, magazines and games. With CD-ROM capacities up to 3 GB being available in the near future, they will form an integral part of Video on Demand (VoD) servers to store full-length movies and multimedia. In the first section of this paper we look at issues related to the single- user desktop environment. Since these multimedia applications are highly interactive in nature, we take a pragmatic approach, and have made a detailed study of the multimedia application behavior in terms of the I/O request patterns generated to the CD-ROM subsystem by tracing these patterns. We discuss prefetch buffer design and seek time characteristics in the context of the analysis of these traces. We also propose an adaptive main-memory hosted cache that receives caching hints from the application to reduce the latency when the user moves from one node of the hyper graph to another. In the second section we look at the use of CD-ROM in a VoD server and discuss the problem of scheduling multiple request streams and buffer management in this scenario. We adapt the C-SCAN (Circular SCAN) algorithm to suit the CD-ROM drive characteristics and prove that it is optimal in terms of buffer size management. We provide computationally inexpensive relations by which this algorithm can be implemented. We then propose an admission control algorithm which admits new request streams without disrupting the continuity of playback of the previous request streams. The algorithm also supports operations such as fast forward and replay. Finally, we discuss the problem of optimal placement of MPEG streams on CD-ROMs in the third section.