77 resultados para high energy Ar ion irradiation
Resumo:
In this paper, we search for the regions of the phenomenological minimal supersymmetric standard model (pMSSM) parameter space where one can expect to have moderate Higgs mixing angle (alpha) with relatively light (up to 600 GeV) additional Higgses after satisfying the current LHC data. We perform a global fit analysis using most updated data (till December 2014) from the LHC and Tevatron experiments. The constraints coming from the precision measurements of the rare b-decays B-s -> mu(+)mu(-) and b -> s gamma are also considered. We find that low M-A(less than or similar to 350) and high tan beta(greater than or similar to 25) regions are disfavored by the combined effect of the global analysis and flavor data. However, regions with Higgs mixing angle alpha similar to 0.1-0.8 are still allowed by the current data. We then study the existing direct search bounds on the heavy scalar/pseudoscalar (H/A) and charged Higgs boson (H-+/-) masses and branchings at the LHC. It has been found that regions with low to moderate values of tan beta with light additional Higgses (mass <= 600 GeV) are unconstrained by the data, while the regions with tan beta > 20 are excluded considering the direct search bounds by the LHC-8 data. The possibility to probe the region with tan beta <= 20 at the high luminosity run of LHC are also discussed, giving special attention to the H -> hh, H/A -> t (t) over bar and H/A -> tau(+)tau(-) decay modes.
Resumo:
Rechargeable batteries have been the torchbearer electrochemical energy storage devices empowering small-scale electronic gadgets to large-scale grid storage. Complementing the lithium-ion technology, sodium-ion batteries have emerged as viable economic alternatives in applications unrestricted by volume/weight. What is the best performance limit for new-age Na-ion batteries? This mission has unravelled suites of oxides and polyanionic positive insertion (cathode) compounds in the quest to realize high energy density. Economically and ecologically, iron-based cathodes are ideal for mass-scale dissemination of sodium batteries. This Perspective captures the progress of Fe-containing earth-abundant sodium battery cathodes with two best examples: (i) an oxide system delivering the highest capacity (similar to 200 mA h/g) and (ii) a polyanionic system showing the highest redox potential (3.8 V). Both develop very high energy density with commercial promise for large-scale applications. Here, the structural and electrochemical properties of these two cathodes are compared and contrasted to describe two alternate strategies to achieve the same goal, i.e., improved energy density in Fe-based sodium battery cathodes.