95 resultados para femtosecond optical heterodyne detection of optical Kerr
Resumo:
Selective detection of nitro-aromatic compounds (NACs) at nanomolar concentration is achieved for the first time in multiple media including water, micelles or in organogels as well as using test strips. Mechanism of interaction of NACs with highly fluorescent p-phenylenevinylene-based molecules has been described as the electron transfer phenomenon from the electron-rich chromophoric probe to the electron deficient NACs. The selectivity in sensing is guided by the pK(a) of the probes as well as the NACs under consideration. TNP-induced selective gel-to-sol transition in THF medium is also observed through the reorganization of molecular self-assembly and the portable test trips are made successfully for rapid on-site detection purpose.
Resumo:
A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the naked-eye detection of cyanide ions in water with a visual color change from red to yellow ((max)=80nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for in-field experiments without requiring any sophisticated instruments.
Resumo:
Knowledge of protein-ligand interactions is essential to understand several biological processes and important for applications ranging from understanding protein function to drug discovery and protein engineering. Here, we describe an algorithm for the comparison of three-dimensional ligand-binding sites in protein structures. A previously described algorithm, PocketMatch (version 1.0) is optimised, expanded, and MPI-enabled for parallel execution. PocketMatch (version 2.0) rapidly quantifies binding-site similarity based on structural descriptors such as residue nature and interatomic distances. Atomic-scale alignments may also be obtained from amino acid residue pairings generated. It allows an end-user to compute database-wide, all-to-all comparisons in a matter of hours. The use of our algorithm on a sample dataset, performance-analysis, and annotated source code is also included.
Resumo:
We present the application of a bismuth modified exfoliated graphite electrode in the detection of arsenic in water. Bismuth film was electrodeposited onto an exfoliated graphite (EG) electrode at a potential of -600 mV. The modification of EG resulted in an increase in the electroactive surface area of the electrode and consequently peak current enhancement in Ru(NH3)(6)(2+/13+) redox probe. Square wave anodic stripping voltammetry was performed with the modified electrode (EG-Bi) in As (III) solutions at the optimum conditions of pH 6, deposition potential of -600 mV and pre-concentration time of 180s. The EG-Bi was able to detect As (III) to the limit of 5 mu g L-1 and was not susceptible to many interfering cations except Cu (II). The EG-Bi is low cost and easy to prepare. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (C-protein ca 1 ng/mu l). Reproducible measurements on protein samples at this concentration (I-p,I-a of 80 +/- 1.2 mu A) could be achieved using a sample volume of ca 30 mu l. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A novel colorimetric probe 1 based on the picolyl moiety has been designed and synthesized. Probe 1 is composed of a pyrene and a bispicolyl amine (BPA) unit, in which the BPA moiety acts as a binding unit and the binding phenomenon is sensed from the changes in the signaling subunit. The probe detects Cu2+ specifically in water and both Cu2+ and Hg2+ efficiently in neutral Brij-58 micellar media. The probe shows a color change visible to the naked eye upon addition of metal ions. Notably, in a micellar medium, probe 1 can detect both the Cu2+ and Hg2+ ions even at parts-per-billion levels. Furthermore, the probe shows ratiometric detection of both the metal ions making the sensing quantitative. The two metal ions could be discriminated both visibly under a UV lamp and with the use of fluorescence spectroscopy. The probe could be also used in biological cell lines for the detection of both Hg2+ and Cu2+ ions.
Resumo:
A new colorimetric probe has been developed for the detection and estimation of Pd-II at sub-nanomolar concentrations. The probe consisted of rhodamine (signaling unit), which was linked with a bis-picolyl moiety (binding site) through a phenyl ring. Pd-II induced opening of the spirolactam ring of the probe with the generation of a prominent pink color. The excellent selectivity of the probe towards Pd-II over Pd-0 or Rh-II ensured its potential utility for the detection of residual palladium contamination in pharma-ceutical drugs and in Pd-catalyzed reactions. The probe showed a ``turn-on'' (bright yellow) fluorescence upon the addition of Pd-II, which made it suitable for the detection of Pd contaminants in mammalian cells.
Resumo:
A simple colorimetric detection of melamine was studied using 15 nm (AuNPs-I), 30 nm (AuNPs-II), and 40 nm (AuNPs-III) citrate-capped gold nanoparticles (AuNPs). The AuNPs aggregated in aqueous solution in the presence of melamine, showing a visual color change from red to blue. This color change led to a shift in the absorption peak from 527 nm, 526 nm, and 525 nm to 638 nm, 626 nm, and 680 nm for AuNPs-I, AuNPs-II, and AuNPs-III, respectively. For all the three AuNPs, linearity was observed between the melamine concentration in aqueous solution and the absorbance ratios, A(638/527), A(626/525), and A(680/526), respectively. The limit of detection (LOD) for melamine for the AuNPs-II was found to be 2.37 x 10(-8) M (correlation coefficient R-2 = 0.9745), which showed better sensitivity as compared to the LOD of the AuNPs-I and AuNPs-III, which were 3.3 x 10(-8) M and 8.9 x 10(-8) M, respectively. The synthesis of AuNPs-II also involved a lower HAuCl4 concentration compared with the other two types of AuNPs, which may reduce the process cost. The AuNPs-II was selected to analyze melamine in pre-treated milk samples, and the recovery percentage was in the range of 91-106%. Thus, the efficient detection of melamine was possible using AuNPs-II for the on-site detection without the aid of expensive instruments.
Resumo:
Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 degrees C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 mu M. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.
Resumo:
Ammonia plays an important role in our daily lives and hence its quantitative and qualitative sensing has become necessary. Bulk structure of carbon nanotubes (CNTs) has been employed to detect the gas concentration of 10 ppm. Hydrophobic CNTs were turned to hydrophilic via the application of a ramp electric field that allowed confinement of a controlled amount of water inside CNT microstructure. These samples were then also used to detect different gases. A comparative study has been performed for sensing three reducing gases, namely, ammonia, sulphur-di-oxide, and hydrogen sulphide to elaborate the selectivity of the sensor. A considerable structural bending in the bulk CNT was observed on evaporation of the confined water, which can be accounted to the zipping of individual nanotubes. However, the rate of the stress induced on these bulk microstructures increased on the exposure of ammonia due to the change in the surface tension of the confined solvent. A prototype of an alarm system has been developed to illustrate sensing concept, wherein the generated stress in the bulk CNT induces a reversible loss in electrical contact that changes the equivalent resistance of the electrical circuit upon exposure to the gas. (C) 2015 AIP Publishing LLC.
Resumo:
DNA sequence and structure play a key role in imparting fragility to different regions of the genome. Recent studies have shown that non-B DNA structures play a key role in causing genomic instability, apart from their physiological roles at telomeres and promoters. Structures such as G-quadruplexes, cruciforms, and triplexes have been implicated in making DNA susceptible to breakage, resulting in genomic rearrangements. Hence, techniques that aid in the easy identification of such non-B DNA motifs will prove to be very useful in determining factors responsible for genomic instability. In this study, we provide evidence for the use of primer extension as a sensitive and specific tool to detect such altered DNA structures. We have used the G-quadruplex motif, recently characterized at the BCL2 major breakpoint region as a proof of principle to demonstrate the advantages of the technique. Our results show that pause sites corresponding to the non-B DNA are specific, since they are absent when the G-quadruplex motif is mutated and their positions change in tandem with that of the primers. The efficiency of primer extension pause sites varied according to the concentration of monovalant cations tested, which support G-quadruplex formation. Overall, our results demonstrate that primer extension is a strong in vitro tool to detect non-B DNA structures such as G-quadruplex on a plasmid DNA, which can be further adapted to identify non-B DNA structures, even at the genomic level.
Resumo:
A new synthetic protocol based on one-pot, copper(I)-catalysed multicomponent reaction of formaldehyde, secondary amine and terminal alkyne has been employed to postsynthetically modify a self-assembled nanoscopic organic cage. By employing this synthetic strategy, three new cages appended with phenyl-, xylyl-and naphthyl-acetylene moieties have been synthesised. The resulting modified cages were characterised by using a range of spectroscopic techniques. The synthesised cages were fluorescent and thus one of them was tested to explore the potential use of such compounds as chemosensors for the detection of nitroaromatics. Experimental findings suggest a high selective quenching of initial fluorescence intensity in the presence of nitroaromatic compounds. Furthermore, it has been observed that among the various nitroaromatics tested, nitrophenolic compounds have better quenching ability.
Resumo:
We consider a quantum particle, moving on a lattice with a tight-binding Hamiltonian, which is subjected to measurements to detect its arrival at a particular chosen set of sites. The projective measurements are made at regular time intervals tau, and we consider the evolution of the wave function until the time a detection occurs. We study the probabilities of its first detection at some time and, conversely, the probability of it not being detected (i.e., surviving) up to that time. We propose a general perturbative approach for understanding the dynamics which maps the evolution operator, which consists of unitary transformations followed by projections, to one described by a non-Hermitian Hamiltonian. For some examples of a particle moving on one-and two-dimensional lattices with one or more detection sites, we use this approach to find exact expressions for the survival probability and find excellent agreement with direct numerical results. A mean-field model with hopping between all pairs of sites and detection at one site is solved exactly. For the one-and two-dimensional systems, the survival probability is shown to have a power-law decay with time, where the power depends on the initial position of the particle. Finally, we show an interesting and nontrivial connection between the dynamics of the particle in our model and the evolution of a particle under a non-Hermitian Hamiltonian with a large absorbing potential at some sites.
Resumo:
Here, we report the synthesis of boron and nitrogen Co-doped carbon nanoparticles (BN-CNPs) by a hydrothermal method using sucrose, boric acid, and urea as the precursors. The BN-CNPs show excellent photoluminescence with a quantum yield of similar to 14.2% in aqueous solution and can be used as photoluminescent probes for selective and sensitive detection of picric acid (PA). PA quenches the photoluminescence signal remarkably, while other explosives cause a little quenching confirming the high selectivity of BN-CNPs. The sensitivity toward PA sensing is high at pH 7 and increases with temperature. The detection limit as well as the sensitivity are shown to improve by adding NaCl to the PA. The low detection limit can be as low as 10 nM at room temperature and pH 7, which indicates the BN-CNPs are superior as compared to other luminescent probes reported in the literature.
Resumo:
A MoS2-RGO composite and borocarbonitride (BC5N) have been used as electrodes to selectively detect dopamine and uric acid in the presence of ascorbic acid. Both the electrodes show excellent eletrocatalytic activity towards the detection of dopamine, the detection limits being 0.55 mu M and 2.1 mu M in the case of MoS2-RGO and BCN respectively. MoS2-RGO shows a linear range of current over the 1-110 mu M concentrations of dopamine, while BCN shows over the 2.3-20 mu M range. BCN also exhibits satisfactory performance in the oxidation of uric acid with a detection limit of 3.8 mu M and the linear range from 4 to 40 mu M. The MoS2-RGO has also been used to detect adenine as well.