111 resultados para error correction
Resumo:
Erasure codes are an efficient means of storing data across a network in comparison to data replication, as they tend to reduce the amount of data stored in the network and offer increased resilience in the presence of node failures. The codes perform poorly though, when repair of a failed node is called for, as they typically require the entire file to be downloaded to repair a failed node. A new class of erasure codes, termed as regenerating codes were recently introduced, that do much better in this respect. However, given the variety of efficient erasure codes available in the literature, there is considerable interest in the construction of coding schemes that would enable traditional erasure codes to be used, while retaining the feature that only a fraction of the data need be downloaded for node repair. In this paper, we present a simple, yet powerful, framework that does precisely this. Under this framework, the nodes are partitioned into two types and encoded using two codes in a manner that reduces the problem of node-repair to that of erasure-decoding of the constituent codes. Depending upon the choice of the two codes, the framework can be used to avail one or more of the following advantages: simultaneous minimization of storage space and repair-bandwidth, low complexity of operation, fewer disk reads at helper nodes during repair, and error detection and correction.
Resumo:
We consider the design of a linear equalizer with a finite number of coefficients in the context of a classical linear intersymbol-interference channel with additive Gaussian noise for channel estimation. Previous literature has shown that Minimum Bit Error Rate(MBER) based detection has outperformed Minimum Mean Squared Error (MMSE) based detection. We pose the channel estimation problem as a detection problem and propose a novel algorithm to estimate the channel based on the MBER framework for BPSK signals. It is shown that the proposed algorithm reduces BER compared to an MMSE based channel estimation when used in MMSE or MBER detection.
Resumo:
Algorithms for adaptive mesh refinement using a residual error estimator are proposed for fluid flow problems in a finite volume framework. The residual error estimator, referred to as the R-parameter is used to derive refinement and coarsening criteria for the adaptive algorithms. An adaptive strategy based on the R-parameter is proposed for continuous flows, while a hybrid adaptive algorithm employing a combination of error indicators and the R-parameter is developed for discontinuous flows. Numerical experiments for inviscid and viscous flows on different grid topologies demonstrate the effectiveness of the proposed algorithms on arbitrary polygonal grids.
Resumo:
Using a Girsanov change of measures, we propose novel variations within a particle-filtering algorithm, as applied to the inverse problem of state and parameter estimations of nonlinear dynamical systems of engineering interest, toward weakly correcting for the linearization or integration errors that almost invariably occur whilst numerically propagating the process dynamics, typically governed by nonlinear stochastic differential equations (SDEs). Specifically, the correction for linearization, provided by the likelihood or the Radon-Nikodym derivative, is incorporated within the evolving flow in two steps. Once the likelihood, an exponential martingale, is split into a product of two factors, correction owing to the first factor is implemented via rejection sampling in the first step. The second factor, which is directly computable, is accounted for via two different schemes, one employing resampling and the other using a gain-weighted innovation term added to the drift field of the process dynamics thereby overcoming the problem of sample dispersion posed by resampling. The proposed strategies, employed as add-ons to existing particle filters, the bootstrap and auxiliary SIR filters in this work, are found to non-trivially improve the convergence and accuracy of the estimates and also yield reduced mean square errors of such estimates vis-a-vis those obtained through the parent-filtering schemes.
Resumo:
General circulation models (GCMs) are routinely used to simulate future climatic conditions. However, rainfall outputs from GCMs are highly uncertain in preserving temporal correlations, frequencies, and intensity distributions, which limits their direct application for downscaling and hydrological modeling studies. To address these limitations, raw outputs of GCMs or regional climate models are often bias corrected using past observations. In this paper, a methodology is presented for using a nested bias-correction approach to predict the frequencies and occurrences of severe droughts and wet conditions across India for a 48-year period (2050-2099) centered at 2075. Specifically, monthly time series of rainfall from 17 GCMs are used to draw conclusions for extreme events. An increasing trend in the frequencies of droughts and wet events is observed. The northern part of India and coastal regions show maximum increase in the frequency of wet events. Drought events are expected to increase in the west central, peninsular, and central northeast regions of India. (C) 2013 American Society of Civil Engineers.
Resumo:
Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. The current work attempts to establish a connection between matroid theory and network-error correcting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of network-error correcting codes to arrive at the definition of a matroidal error correcting network. An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error correcting network code if and only if it is a matroidal error correcting network associated with a representable matroid. Therefore, constructing such network-error correcting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa.
Resumo:
In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48: 708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.
Resumo:
Propranolol, a beta-adrenergic receptor blocker, is presently considered to be a potential therapeutic intervention under investigation for its role in prevention and treatment of osteoporosis. However, no studies have compared the osteoprotective properties of propranolol with well accepted therapeu-tic interventions for the treatment of osteoporosis. To address this question, this study was designed to evaluate the bone protective effects of zoledronic acid, alfacalcidol and propranolol in an animal model of postmenopausal osteoporosis. Five days after ovariectomy, 36 ovariectomized (OVX) rats were divided in- to 6 equal groups, randomized to treatments zoledronic acid (100 μg/kg, intravenous single dose); alfacal-cidol (0.5 μg/kg, oral gauge daily); propranolol (0.1mg/kg, subcutaneously 5 days per week) for 12 weeks. Untreated OVX and sham OVX were used as controls. At the end of the study, rats were killed under anesthesia. For bone porosity evaluation, whole fourth lumbar vertebrae (LV4) were removed. LV4 were also used to measure bone mechanical propeties. Left femurs were used for bone histology. Propranolol showed a significant decrease in bone porosity in comparison to OVX control. Moreover, propranolol sig- nificantly improved bone mechanical properties and bone quality when compared with OVX control. The osteoprotective effect of propranolol was comparable with zoledronic acid and alfacalcidol. Based on this comparative study, the results strongly suggest that propranolol might be new therapeutic intervention for the management of postmenopausal osteoporosis in humans.
Resumo:
Homogenization and error analysis of an optimal interior control problem in the framework of Stokes' system, on a domain with rapidly oscillating boundary, are the subject matters of this article. We consider a three dimensional domain constituted of a parallelepiped with a large number of rectangular cylinders at the top of it. An interior control is applied in a proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types of functionals, namely a functional involving the L-2-norm of the state variable and another one involving its H-1-norm. The asymptotic analysis of optimality systems for both cases, when the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major contribution is to derive error estimates for the state, the co-state and the associated pressures, in appropriate functional spaces.
Resumo:
A novel Projection Error Propagation-based Regularization (PEPR) method is proposed to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method defines the regularization parameter as a function of the projection error developed by difference between experimental measurements and calculated data. The regularization parameter in the reconstruction algorithm gets modified automatically according to the noise level in measured data and ill-posedness of the Hessian matrix. Resistivity imaging of practical phantoms in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm as well as with Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) with PEPR. The effect of PEPR method is also studied with phantoms with different configurations and with different current injection methods. All the resistivity images reconstructed with PEPR method are compared with the single step regularization (STR) and Modified Levenberg Regularization (LMR) techniques. The results show that, the PEPR technique reduces the projection error and solution error in each iterations both for simulated and experimental data in both the algorithms and improves the reconstructed images with better contrast to noise ratio (CNR), percentage of contrast recovery (PCR), coefficient of contrast (COC) and diametric resistivity profile (DRP). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we consider two-dimensional (2-D) binary channels in which the 2-D error patterns are constrained so that errors cannot occur in adjacent horizontal or vertical positions. We consider probabilistic and combinatorial models for such channels. A probabilistic model is obtained from a 2-D random field defined by Roth, Siegel and Wolf (2001). Based on the conjectured ergodicity of this random field, we obtain an expression for the capacity of the 2-D non-adjacent-errors channel. We also derive an upper bound for the asymptotic coding rate in the combinatorial model.
Resumo:
The authors consider the channel estimation problem in the context of a linear equaliser designed for a frequency selective channel, which relies on the minimum bit-error-ratio (MBER) optimisation framework. Previous literature has shown that the MBER-based signal detection may outperform its minimum-mean-square-error (MMSE) counterpart in the bit-error-ratio performance sense. In this study, they develop a framework for channel estimation by first discretising the parameter space and then posing it as a detection problem. Explicitly, the MBER cost function (CF) is derived and its performance studied, when transmitting binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals. It is demonstrated that the MBER based CF aided scheme is capable of outperforming existing MMSE, least square-based solutions.
Resumo:
In this letter, we analyze the end-to-end average bit error probability (ABEP) of space shift keying (SSK) in cooperative relaying with decode-and-forward (DF) protocol, considering multiple relays with a threshold based best relay selection, and selection combining of direct and relayed paths at the destination. We derive an exact analytical expression for the end-to-end ABEP in closed-form for binary SSK, where analytical results agree with simulation results. For non-binary SSK, approximate analytical and simulation results are presented.
Resumo:
In this article, we analyse several discontinuous Galerkin (DG) methods for the Stokes problem under minimal regularity on the solution. We assume that the velocity u belongs to H-0(1)(Omega)](d) and the pressure p is an element of L-0(2)(Omega). First, we analyse standard DG methods assuming that the right-hand side f belongs to H-1(Omega) boolean AND L-1(Omega)](d). A DG method that is well defined for f belonging to H-1(Omega)](d) is then investigated. The methods under study include stabilized DG methods using equal-order spaces and inf-sup stable ones where the pressure space is one polynomial degree less than the velocity space.