111 resultados para electron cyclotron resonance


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have prepared crystalline nanowires (diameter ∼ 50 nm, length ∼ a few microns) of the charge-ordering manganite Pr0.5Ca0.5MnO3 using a low reaction temperature hydrothermal method and characterized them using x-ray diffraction, transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry and electron magnetic resonance measurements. While the bulk sample shows a charge ordering transition at 245 K and an antiferromagnetic transition at 175 K, SQUID magnetometry and electron magnetic resonance experiments reveal that in the nanowires phase, a ferromagnetic transition occurs at ∼ 105 K. Further, the antiferromagnetic transition disappears and the charge ordering transition is suppressed. This result is particularly significant since the charge order in Pr0.5Ca0.5MnO3 is known to be very robust, magnetic fields as high as 27 T being needed to melt it.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An equimolar mixture of Ni(NO(3))(2)center dot 6H(2)O and pyridine-2-aldehyde with two equivalents of NaN(3) in methanol in the presence of NaOMe resulted in the formation of light green precipitate which upon crystallization from dimethylformamide (DMF) yielded light green single crystals [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(2)(MeOH)}center dot MeOH center dot 3H(2)O](n) (1) and [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(4)}center dot 2DMF center dot H(2)O](n) (2) (pic = pyridine-2-carboxylate) at room temperature and high temperature (100 degrees C), respectively. Variable temperature magnetic studies revealed the existence of overall ferromagnetic behaviour with J approximate to + 10 cm(-1) and D approximate to -2 to -7 cm(-1) for 1 and 2, respectively. Negative D values as well as variation of D upon slight distortion of structure by varying reaction temperature were observed. The X-band Electron Paramagnetic Resonance (EPR) spectra of both 2 and 3 were recorded below 50 K. The structural distortion was also implicated from the EPR spectra. Density Functional Theory (DFT) calculations on both complexes were performed in two different ways to corroborate the magnetic results. Considering only Ni(2)(II) dimeric unit, results were J = + 20.65 cm(-1) and D = -3.16 cm(-1) for 1, and J = +24.56 cm(-1) and D = -4.67 cm(-1) for 2. However, considering Ni(2)(II)Na(2)(I) cubane as magnetic core the results were J = +16.35 cm(-1) (1), +19.54 cm(-1) (2); D = -3.05 cm(-1) (1), -4.25 cm(-1) (2).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CaxCu3Ti4O12 (x=0.90, 0.97, 1.0, 1.1 and 1.15) polycrystalline powders with variation in calcium content were prepared via the oxalate precursor route. The structural, morphological and dielectric properties of the ceramics fabricated using these powders were studied using X-ray diffraction, scanning electron microscope along with energy dispersive X-ray analysis, transmission electron microscopy, electron spin resonance (ESR) spectroscopy and impedance analyzer. The X-ray diffraction patterns obtained for the x = 0.97, 1.0 and 1.1 powdered ceramics could be indexed to a body-centered cubic perovskite related structure associated with the space group Im3. The ESR studies confirmed the absence of oxygen vacancies in the ceramics that were prepared using the oxalate precursor route. The dielectric properties of these suggest that the calcium deficient sample (x = 0.97) has a reduced dielectric loss while retaining the high dielectric constant which is of significant industrial relevance. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

J-proteins are obligate cochaperones of Hsp70s and stimulate their ATPase activity via the J-domain. Although the functions of J-proteins have been well understood in the context of Hsp70s, their additional co-evolved ``physiological functions'' are still elusive. We report here the solution structure and mechanism of novel iron-mediated functional roles of human Dph4, a type III J-protein playing a vital role in diphthamide biosynthesis and normal development. The NMR structure of Dph4 reveals two domains: a conserved J-domain and a CSL-domain connected via a flexible linker-helix. The linker-helix modulates the conformational flexibility between the two domains, regulating thereby the protein function. Dph4 exhibits a unique ability to bind iron in tetrahedral coordination geometry through cysteines of its CSL-domain. The oxidized Fe-Dph4 shows characteristic UV-visible and electron paramagnetic resonance spectral properties similar to rubredoxins. Iron-bound Dph4 (Fe-Dph4) also undergoes oligomerization, thus potentially functioning as a transient ``iron storage protein,'' thereby regulating the intracellular iron homeostasis. Remarkably, Fe-Dph4 exhibits vital redox and electron carrier activity, which is critical for important metabolic reactions, including diphthamide biosynthesis. Further, we observed that Fe-Dph4 is conformationally better poised to perform Hsp70-dependent functions, thus underlining the significance of iron binding in Dph4. Yeast Jjj3, a functional ortholog of human Dph4 also shows a similar iron-binding property, indicating the conserved nature of iron sequestration across species. Taken together, our findings provide invaluable evidence in favor of additional co-evolved specialized functions of J-proteins, previously not well appreciated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper dodecanoate films prepared by emulsion method exhibit superhydrophobic property with water contact angle of 155 degrees and sliding angle of <2 degrees. The films have been characterised by using X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. Surface microstructure of copper dodecanoate consists of numerous microscale papillas of about 6-12 mu m in length with a diameter in the range of 360-700 nm. The superhydrophobicity of the films is due to their dual micronano surface morphology. The wetting behaviour of the film surface was studied by a simple water immersion test. The results show that copper dodecanoate film retained superhydrophobic property even after immersing in water for about 140 h. The optical absorption spectrum exhibits two broadbands centred at 388 and 630 nm that have been assigned to B-2(1g) -> E-2(g) and B-2(1g) -> B-2(2g) transitions of Cu2+ ions, respectively. The electron paramagnetic resonance spectrum exhibits two resonance signals with effective g values at g(parallel to)approximate to 2.308 and g(perpendicular to) approximate to 2.071, which suggests that the unpaired electron occupies d(x2-y2) orbital in the ground state. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline Nd2O3:Ni2+ (2 mol%) phosphor has been prepared by a low temperature (similar to 400 degrees C) solution combustion method, in a very short time (<5 min). Powder X-ray diffraction results confirm the single hexagonal phase of nanopowders. Scanning electron micrographs show that nanophosphor has porous nature and the particles are agglomerated. Transmission electron microscopy confirms the nanosize (20-25 nm) of the crystallites. The electron paramagnetic resonance (EPR) spectrum exhibits a symmetric absorption at g approximate to 2.77 which suggests that the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (chi) has been evaluated. Raman study show major peaks, which are assigned to F-g and combination of A(g) + E-g modes. Thermoluminescence (TL) studies reveal well resolved glow peaks at 169 degrees C along with shoulder peak at around 236 degrees C. The activation energy (E in eV), order of kinetics (b) and frequency factor (s) were estimated using glow peak shape method. It is observed that the glow peak intensity at 169 degrees C increases linearly with gamma-dose which suggest that Nd2O3:Ni2+ is suitable for radiation dosimetry applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports investigation of Na2O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1-5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 degrees C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50-150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 degrees C along with relatively resolved glow peak at 180 degrees C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 degrees C along with two well defined peaks at similar to 215 and 275 degrees C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nano-ceramic phosphor CaSiO 3 doped with Pb and Mn was synthesized by the low temperature solution combustion method. The materials were characterized by Powder X-Ray Diffraction (XRD), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The Electron Paramagnetic Resonance (EPR) spectrum of the investigated sample exhibits a broad resonance signal centered at g=1.994. The number of spins participating in resonance (N) and its paramagnetic susceptibility (�) have been evaluated. Photoluminescence of doped CaSiO 3 was investigated when excited by UV radiation of 256 nm. The phosphor exhibits an emission peak at 353 nm in the UV range due to Pb 2+. Further, a broad emission peak in the visible range 550-625 nm can be attributed to 4T 1� 6A 1 transition of Mn 2+ ions. The investigation reveals that doping perovskite nano-ceramics with transition metal ions leads to excellent phosphor materials for potential applications. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cd-1 - xNixSiO3 (x = 1-7 mol%) nanophosphors have been prepared for the first time by the combustion method using oxylyldihydrizide as a fuel. Powder X-ray diffraction results confirm the formation of monoclinic phase. Scanning electron micrographs show that Ni2+ influences the porosity of samples. The optical energy gap is widened with increase of Ni2+ ion dopant. The electron paramagnetic resonance spectrum of Ni2+ ions in CdSiO3 exhibits a symmetric absorption at g = 2.343 and the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (chi) has been evaluated. The thermoluminescence intensity is found to increase up to similar to 20 min ultra-violet exposure and thereafter, decrease with further increase of ultra-violet dose. The kinetic parameters such as activation energy (E), frequency factor (s)and order of kinetics was estimated using glow peak shape method and the results are discussed. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

YAlO3:Ni2+ (0.1 mol%) doped nanophosphor was synthesised by a low temperature solution combustion method. Powder X-ray diffraction (PXRD) confirms the orthorhombic phase of yttrium aluminate (YAlO3) along with traces of Y3Al5O12. Scanning Electron microscopy (SEM) shows that the powder particles appears to be spherical in shape with large agglomeration. The average crystallite sizes appeared to be in the range 45-90 nm and the same was confirmed by transmission electron microscopy (TEM) and Williamson-Hall (W-H) plots. Electron Paramagnetic Resonance (EPR) and photoluminescence (PL) studies reveal that Ni2+ ions are in octahedral coordination. Thermoluminescence (TL) glow curve consists of two peaks with the main peak at similar to 224 degrees C and a shouldered peak at 285 degrees C was recorded in the range 0.2-15 kGy gamma-irradiated samples. The TL intensity was found to be increasing linearly for 224 degrees C and 285 degrees C peaks up to 1 kGy and thereafter it shows sub-linear (up to 8 kGy) and saturation behavior. The trap parameters namely activation energy (E), order of kinetics (b), frequency factor (s) at different gamma-doses were determined using Chens glow peak shape and Luschiks methods then the results are discussed in detail. Simple glow peak structure, the 224 degrees C peak in YAlO3:Ni2+ nanophosphor can be used in personal dosimetry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of annealing on structural defects and d(0) ferromagnetism in SnO2 nanoparticles prepared by solution combustion method is investigated. The as-synthesized SnO2 nanoparticles were annealed at 400-800 degrees C for 2 h, in ambient conditions. The crystallinity, size, and morphology of the samples were studied using x-ray diffraction and transmission electron microscopy studies. The annealing results in grain growth due to coarsening as well as reduction in oxygen vacancies as confirmed by Raman spectroscopy, photoluminescence spectroscopy, and x-ray photoelectron spectroscopy. All the as synthesized and annealed samples exhibit room temperature ferromagnetism (RTFM) with distinct hysteresis loops and the saturation magnetization as high as similar to 0.02 emu/g in as-synthesized samples. However, the saturation magnetization is drastically reduced with increasing annealing temperature. Further the presence of singly charged oxygen vacancies (V-o(-) signal at g-value 1.99) is confirmed by electron paramagnetic resonance studies, which also diminish with increasing annealing temperature. The observed diminishing RTFM and simultaneous evidences of diminishing O vacancies clearly indicate that RTFM is driven by defects in oxide lattice and confirms primary role of oxygen vacancies in inducing ferromagnetic ordering in metal oxide semiconductors. The study also provides improved fundamental understanding regarding the ambiguity in the origin of intrinsic RTFM in semiconducting metal oxides and projects their technological application in the field of spintronics. (C) 2013 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermoluminescence properties of YAlO3:Dy3+ nanophosphor prepared by a low temperature solution combustion (SC) method using oxalyl dihydrazide as a fuel were studied and the results were compared to bulk phosphor prepared by solid state (SS) synthesis. Powder X-ray diffraction patterns confirm the orthorhombic phase of SC and SS methods. Rietveld refinement was used to estimate the cell parameters of undoped and Dy3+ doped YAlO3. Scanning electron micrographs reveal dumbbell shape particles. Electron paramagnetic resonance spectra of YAlO3:Dy3+ nanophosphors were studied at 293 K, 77 K and 10 K. Thermoluminescence responses of SC and SS prepared phosphor were studied using gamma irradiation in the dose range 0.1-6 kGy at a warming rate of 1 degrees C s (1) at room temperature (RT). The optimized concentrations of Dy3+ ions in YAlO3 was found to be 3 mol%. The trapping parameters (i. e. activation energy, frequency factor, order of kinetic) of all the individual peaks of the glow curves have been analysed by using Chen's method. The low fading and linear response in the wide range (0.1-1 kGy) suggests the possibility of usage of SC prepared phosphor in dosimeter applications. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a comparative study of the temperature dependent magnetic properties and electron paramagnetic resonance parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Bulk BSMO is known to have a high T-N similar to 260K and robust charge ordering (T-CO similar to 360 K). We confirm that the bulk sample shows an antiferromagnetic transition around similar to 260K and a spin-glass transition similar to 40 K. For the nano sample, we see a clear ferromagnetic transition at around similar to 120 K. We conclude that spin glass state, which is present due to the co-existence of antiferromagnetic and ferromagnetic states in the bulk sample, is suppressed in the nano sample and ferromagnetism is induced instead. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO:Eu (0.1 mol%) nanopowders have been synthesized by auto ignition based low temperature solution combustion method. Powder X-ray diffraction (PXRD) patterns confirm the nanosized particles which exhibit hexagonal wurtzite structure. The crystallite size estimated from Scherrer's formula was found to be in the range 35-39 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal particles are agglomerated with quasi-hexagonal morphology. A blue shift of absorption edge with increase in band gap is observed for Eu doped ZnO samples. Upon 254 nm excitation, ZnO:Eu nanopowders show peaks in regions blue (420-484 nm), green (528 nm) and red (600 nm) which corresponds to both Eu2+ and Eu3+ ions. The electron paramagnetic resonance (EPR) spectrum exhibits a broad resonance signal at g= 4.195 which is attributed to Eu2+ ions. Further, EPR and thermo-luminescence (TL) studies reveal presence of native defects in this phosphor. Using TL glow peaks the trap parameters have been evaluated and discussed. (C) 2014 Elsevier B.V. All rights reserved.