151 resultados para electromagnetic scattering
Resumo:
We analyse the Roy equations for the lowest partial waves of elastic ππ scattering. In the first part of the paper, we review the mathematical properties of these equations as well as their phenomenological applications. In particular, the experimental situation concerning the contributions from intermediate energies and the evaluation of the driving terms are discussed in detail. We then demonstrate that the two S-wave scattering lengths a00 and a02 are the essential parameters in the low energy region: Once these are known, the available experimental information determines the behaviour near threshold to within remarkably small uncertainties. An explicit numerical representation for the energy dependence of the S- and P-waves is given and it is shown that the threshold parameters of the D- and F-waves are also fixed very sharply in terms of a00 and a20. In agreement with earlier work, which is reviewed in some detail, we find that the Roy equations admit physically acceptable solutions only within a band of the (a00,a02) plane. We show that the data on the reactions e+e−→ππ and τ→ππν reduce the width of this band quite significantly. Furthermore, we discuss the relevance of the decay K→ππeν in restricting the allowed range of a00, preparing the grounds for an analysis of the forthcoming precision data on this decay and on pionic atoms. We expect these to reduce the uncertainties in the two basic low energy parameters very substantially, so that a meaningful test of the chiral perturbation theory predictions will become possible.
Resumo:
Detailed small angle neutron scattering ( SANS) studies were carried out with the aqueous vesicular (unilamellar) suspension of dimeric ion-paired lipids (2a-2c) for spacer lengths corresponding to n-values of 2, 6 and 10 and monomeric ion-paired lipid (3) below and above the phase transition temperature of each amphiphile. The vesicular structure strongly depends on the spacer chain length. The mean vesicle size is smallest for the lipid with a short spacer, n = 3 and it increases with the increase in the spacer chain length. The bilayer thickness also decreases with the increase in the spacer chain length. The size polydispersity increases with the increase in the spacer chain length (n-value).
Resumo:
The critical micelle concentration (CMC) of several surfactants that contain an NLO chromophore, either at the hydrocarbon tail, or at the hydrophilic headgroup, or even as a counterion, was determined by hyper-Rayleigh scattering (HRS). In all cases, the HRS signal exhibited a similar variation with surfactant concentration, wherein the CMC is inferred from a rather unprecedented drop in the signal intensity. This drop is attributed to the formation of small pre-micellar aggregates, whose concentrations become negligible above CMC. In addition, a probe molecule, which upon protonation yielded a species with significantly enhanced HRS intensity, was developed and its utility for the determination of the CIVIC of simple fatty acids was demonstrated.
Resumo:
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Resumo:
In many industrial casting processes, knowledge of the solid fraction evolution during the solidification process is a key factor in determining the process parameters such as cooling rate, stirring intensity and in estimating the total solidification time. In the present work, a new method of estimating solid fraction is presented, which is based on calorimetric principles. In this method, the cooling curve data at each point in the melt, along with the thermal boundary conditions, are used to perform energy balance in the mould, from which solid fraction generation during any time interval can be estimated. This method is applied to the case of a rheocasting process, in which Al-Si alloy (A356 alloy) is solidified by stirring in a cylindrical mould placed in the annulus of a linear electromagnetic stirrer. The metal in the mould is simultaneously cooled and stirred to produce a cylindrical billet with non-dendritic globular microstructure. Temperature is measured at key locations in the mould to assess the various heat exchange processes prevalent in the mould and to monitor the solidification rate. The results obtained by energy balance method are compared with those by the conventional procedure of calculating solid fraction using the Schiel equation.
Resumo:
Titanium dioxide films have been deposited using DC magnetron sputtering technique onto well-cleaned p-silicon substrates at an oxygen partial pressure of 7 x 10(-5) mbar and at a sputtering pressure (Ar + O-2) Of I X 10(-3) mbar. The deposited films were calcinated at 673 and 773 K. The composition of the films as analyzed using Auger electron spectroscopy reveals the stoichiometry with an 0 and Ti ratio 2.08. The influence of post-deposition annealing at 673 and 773 K on the structural properties of the titanium dioxide thin films have been studied using XRD and Raman scattering. The structure of the films deposited at the ambient was found to be amorphous and the films annealed at temperature 673 K and above were crystalline with anatase structure. The lattice constants, grain size, microstrain and the dislocation density of the film are calculated and correlated with annealing temperature. The Raman scattering study was performed on the as-deposited and annealed samples and the existence of Raman active modes A(1g), B-1g and E-g corresponding to the Raman shifts are studied and reported. The improvement of crystallinity of the TiO2 films was also studied using Raman scattering studies. (C) 2003 Elsevier Ltd. All rights reserved.
Studies on Transport Phenomena in Rheocasting of Al-Si alloy in Presence of Electromagnetic Stirring
Resumo:
Temperature dependent Brillouin scattering studies have been performed to ascertain the influence of solvent dynamics on ion-transport in succinonitrile-lithium salt plastic crystalline electrolytes. Though very rarely employed, we observe that Brillouin spectroscopy is an invaluable tool for investigation of solvent dynamics. Analysis of various acoustic (long wavelength) phonon modes observed in the Brillouin scattering spectra reveal the influence of trans-gauche isomerism and as well as ion-association effects on ion transport. Although pristine SN and dilute SN-LiClO(4) samples show only the bulk longitudinal-acoustic (LA) mode, concentrated SN-LiClO(4) (similar to 0.3-1 M) electrolytes display both the bulk LA mode as well as salt induced brillouin modes at ambient temperature. The appearance of more than one brillouin mode is attributed to the scattering of light from regions with different compressibilities (''compactness''). Correspondingly, these modes show a large decrease in the full width at half-maximum (abbreviated as nu(f)) as the temperature decreases. Anomalous temperature dependent behavior of nu(f) with addition of salt could be attributed to the presence of disorder or strong coupling with a neighbor. The shape of the spectrum was evaluated using a Lorentzian and Fano line shape function depending on the nature and behavior of the Brillouin modes.
Resumo:
In this paper, the radiated electric and magnetic fields above a perfectly conducting ground at different heights from 10 m to 10 km and for lateral distances varying from 20 m to 10 km from a lightning return stroke channel are computed and the field waveforms are presented. It has been observed that the vertical electric field reverses its polarity with height and this height depends on the radial distance from the lightning channel. The magnitude of the horizontal electric field, on the other hand,increases with height up to a certain height and then reduces. The effect of variation in the rate of rise of lightning current (di/dt) and the velocity of return stroke current on the radiated electric and magnetic fields for the above heights and distances have also been studied. It is seen that the variation in maximum current derivative does not have a significant influence on the electric field when ground is assumed as a perfect conductor but it influences significantly the horizontal electric field when ground has finite conductivity. The velocity of propagation of return stroke current on the other hand has significant influence for both perfectly as well as finitely conducting ground conditions.
Resumo:
The effect of electromagnetic stirring of melt on the final macrosegregation in the continuous casting of an aluminium alloy billet is studied numerically. A continuum mixture model for solidification in presence of electromagnetic stirring is presented. As a case study, simulations are performed for direct chill (DC) casting of an Al-Cu alloy and the effect of electromagnetic stirring on macrosegregation is analysed. The model predicts the temperature, velocity, and species distribution in the mold. As a special case, we have also studied the case in which dendritic particles are fragmented at the interface due to vigorous electromagnetic stirring. For this case, an additional conservation equation for the transport of solid fraction is solved. For modeling the resistance offered by moving solid crystals, a switching function in the momentum equations is used for variation of viscosity. The fragmentation and transport of dendritic particles has a profound effect on the final macrosegregation and microstructure of the solidified billet. It is found that the application of electromagnetic stirring in continuous casting of billets results in better temperature uniformity and macrosegregation pattern.
Resumo:
The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.