117 resultados para electrically conductive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodes and the nature of their contact with organic materials play a crucial role in the realization of efficient optoelectronic components. Whether the injection (organic light-emitting diodes - OLEDs) or collection (organic photovoltaic cells - OPV cells) of carriers, contacts must be as efficient as possible. To do this, it is customary to refer to electrode surface treatment and/or using a buffer layer all things to optimize the contact. Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive anode is coated with a buffer layer (ABL). We show that an ultra-thin gold (0.5 nm) or a thin molybdenum oxide (3-5 nm) can be used as efficient ABL. However, the effects of these ABL depend on the highest occupied molecular orbital (HOMO) of different electron donors of the OPV cells. The results indicate that, in the case of metal ABL, a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function Phi(Au). MoO3 has a wider field of application as ABL than gold. The role of the oxide is not so clearly understood than that of Au, different models proposed to interpret the experimental results are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the threshold voltage modeling of ultra-thin (1 nm-5 nm) silicon body double-gate (DG) MOSFETs using self-consistent Poisson-Schrodinger solver (SCHRED). We define the threshold voltage (V th) of symmetric DG MOSFETs as the gate voltage at which the center potential (Φ c) saturates to Φ c (s a t), and analyze the effects of oxide thickness (t ox) and substrate doping (N A) variations on V th. The validity of this definition is demonstrated by comparing the results with the charge transition (from weak to strong inversion) based model using SCHRED simulations. In addition, it is also shown that the proposed V t h definition, electrically corresponds to a condition where the inversion layer capacitance (C i n v) is equal to the oxide capacitance (C o x) across a wide-range of substrate doping densities. A capacitance based analytical model based on the criteria C i n v C o x is proposed to compute Φ c (s a t), while accounting for band-gap widening. This is validated through comparisons with the Poisson-Schrodinger solution. Further, we show that at the threshold voltage condition, the electron distribution (n(x)) along the depth (x) of the silicon film makes a transition from a strong single peak at the center of the silicon film to the onset of a symmetric double-peak away from the center of the silicon film. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady rotating flow of an incompressible laminar viscous electrically conducting fluid over an impulsively rotated infinite disk in the presence of magnetic field and suction is investigated. We have considered the situation where there is a steady state initially (i.e., at t = 0, the fluid is rotating with constant angular velocity over a stationary disk). Then at t > 0, the disk is suddenly rotated with a constant angular velocity either in the same direction or in opposite direction to that of the fluid rotation which causes unsteadiness in the flow field. The effect of the impulsive motion is found to be more pronounced on the tangential shear stress than on the radial shear stress. When the disk and the fluid rotate in the same direction, the tangential shear stress at the surface changes sign in a small time interval immediately after the start of the impulsive motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO2 (C-TiO2) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO2 substrates are synthesized by varying experimental, conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction and X-ray photoelectron spectroscopic techniques. C-TiO2 in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO2, improves the intensities of Raman signals, compared, to undoped TiO2. Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO2 is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn,, triggers charge transfer between TiO2 and analyte. The C-TiO2 substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constant stress accelerated ageing experiments were conducted on unfilled epoxy and epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. Electrical (6 kV/mm), thermal (60 degrees C) and combined electrothermal (6 kV/mm and 60 degrees C) ageing experiments were performed for a duration of 250 h. The leakage current through the samples were continuously monitored and the variation in the tan delta values with ageing duration was also monitored. It was observed that the increase in the tan delta value with ageing duration was less for the epoxy alumina nanocomposites as compared to the unfilled epoxy. Dielectric spectroscopy measurements were performed on the samples before and after the ageing in the frequency range of 10(-2) to 10(6) Hz. The permittivity and tan delta values were found to increase in the low frequency range. The volume resistivity of unfilled epoxy and epoxy alumina nanocomposites were also measured before and after the ageing. The volume resistivity improved marginally for the thermally aged samples, but reduced for the electrically aged and the electrothermally aged samples. The decrease in the value of volume resistivity was more for the multistress aged unfilled epoxy samples as compared to the multistress aged epoxy alumina nanocomposites. It was also observed that the unfilled epoxy samples having a higher value of tan delta failed first. The time to failure of the samples showed an increasing trend with an increase in the nano filler loading of epoxy alumina nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphotropic phase boundary (MPB) systems are characterized by the coexistence of two ferroelectric phases and are associated with anomalous piezoelectric properties. In general, such coexistence is brought about by composition induced ferroelectric-ferroelectric instability. Here we demonstrate that a pure ferroelectric compound Na1/2Bi1/2TiO3 (NBT) exhibits the coexistence of two ferroelectric phases, rhombohedral (R3c) and monoclinic (Cc), in its equilibrium state at room temperature. This was unravelled by adopting a unique strategy of comparative structural analysis of electrically poled and thermally annealed specimens using high resolution synchrotron x-ray powder diffraction data. The relative fraction of the coexisting phases was found to be highly sensitive to thermal, mechanical, and electrical stimuli. The coexistence of ferroelectric phases in the ground state of the pure compound will have significant bearing on the way MPB is induced in NBT-based lead-free piezoceramics. DOI: 10.1103/PhysRevB.87.060102

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work is to confirm the possibility of utilization of PolyVinyliDeneFlouride (PVDF) films in MEMS based microactuator for microjet applications. A membrane type microactuator is designed, developed, packaged and tested. The microactuator consists of PVDF film attached to thin Silicon diaphragm. As the voltage difference is applied across it, due to the piezoelectric behaviour, it deforms primarily in d31 mode, which in turn deflects the diaphragm. Using finite element methods, coupled field analysis is carried out to optimize the dimensions of the actuator with respect to the output force and input voltage. A cavity with a square diaphragm of 1mm×1mm×5μm is realized using standard microfabrication technique. 50μm thick PVDF film, cut with special dicing saw, is glued inside the metalized cavity using low stress, conductive, room temperature cured epoxy. The 3mm×3mm×0.675mm actuator die is packaged using Chip-On-Board technique in conjunction with low temperature soldering for taking the connections. The micro-actuator is tested in both actuation and sensing mode. The developed actuator is proposed to use with micro nozzle to study the utilization in drug delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter relates to the design of crossovers for carrying criss crossing signals. Two types of crossovers are proposed in this letter. Both the crossovers are designed using a two layer printed circuit board. An unbroken continuous transmission line is routed in the top layer for carrying signal 1 from one node to another node. Transmission line used for carrying a signal 2 consists of three physically discontinuous, but electrically connected segments. Two end segments of these are located in the top layer while the middle segment is placed in the bottom layer. While Type I crossover offers an isolation of 25 dB, Type II crossover offers isolation better than 35 dB from dc to 10 GHz. These crossovers are compact and measure an actual size of 10 x 10 x 0.78 mm(3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In designing and developing various biomaterials, the influence of substrate properties, like surface topography, stiffness and wettability on the cell functionality has been investigated widely. However, such study to probe into the influence of the substrate conductivity on cell fate processes is rather limited. In order to address this issue, spark plasma sintered HA-CaTiO3 (Hydroxyapatite-Calcium titanate) has been used as a model material system to showcase the effect of varying conductivity on cell functionality. Being electroactive in nature, mouse myoblast cells (C2C12) were selected as a model cell line in this study. It was inferred that myoblast adhesion/growth systematically increases with substrate conductivity due to CaTiO3 addition to HA. Importantly, parallel arrangement of myoblast cells on higher CaTiO3 containing substrates indicate that self-adjustable cell patterning can be achieved on conductive biomaterials. Furthermore, enhanced myoblast assembly and myotube formation were recorded after 5 days of serum starvation. Overall, the present study conclusively establishes the positive impact of the substrate conductivity towards cell proliferation and differentiation as well as confirms the efficacy of HA-CaTiO3 biocomposites as conductive platforms to facilitate the growth, orientation and fusion of myoblasts, even when cultured in the absence of external electric field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we report the first applications of TCNQ as a rapid and highly sensitive off-the-shelf cyanide detector. As a proof-of-concept, we have applied a kinetically selective single-electron transfer (SET) from cyanide to deep-lying LUMO orbitals of TCNQ to generate a persistently stable radical anion (TCNQ(center dot-)), under ambient condition. In contrast to the known cyanide sensors that operate with limited signal outputs, TCNQ(center dot-) offers a unique multiple signaling platform. The signal readability is facilitated through multichannel absorption in the UV-vis-NIR region and scattering-based spectroscopic methods like Raman spectroscopy and hyper Rayleigh scattering techniques. Particularly notable is the application of the intense 840 nm NIR absorption band to detect cyanide. This can be useful for avoiding background interference in the UV-vis region predominant in biological samples. We also demonstrate the fabrication of a practical electronic device with TCNQ as a detector. The device generates multiorder enhancement in current with cyanide because of the formation of the conductive TCNQ(center dot-).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stochastic modelling is a useful way of simulating complex hard-rock aquifers as hydrological properties (permeability, porosity etc.) can be described using random variables with known statistics. However, very few studies have assessed the influence of topological uncertainty (i.e. the variability of thickness of conductive zones in the aquifer), probably because it is not easy to retrieve accurate statistics of the aquifer geometry, especially in hard rock context. In this paper, we assessed the potential of using geophysical surveys to describe the geometry of a hard rock-aquifer in a stochastic modelling framework. The study site was a small experimental watershed in South India, where the aquifer consisted of a clayey to loamy-sandy zone (regolith) underlain by a conductive fissured rock layer (protolith) and the unweathered gneiss (bedrock) at the bottom. The spatial variability of the thickness of the regolith and fissured layers was estimated by electrical resistivity tomography (ERT) profiles, which were performed along a few cross sections in the watershed. For stochastic analysis using Monte Carlo simulation, the generated random layer thickness was made conditional to the available data from the geophysics. In order to simulate steady state flow in the irregular domain with variable geometry, we used an isoparametric finite element method to discretize the flow equation over an unstructured grid with irregular hexahedral elements. The results indicated that the spatial variability of the layer thickness had a significant effect on reducing the simulated effective steady seepage flux and that using the conditional simulations reduced the uncertainty of the simulated seepage flux. As a conclusion, combining information on the aquifer geometry obtained from geophysical surveys with stochastic modelling is a promising methodology to improve the simulation of groundwater flow in complex hard-rock aquifers. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional (2D) nanosheets obtained by exfoliating inorganic layered crystals have emerged as a new class of materials with unique attributes. One of the critical challenges is to develop robust and versatile methods for creating new nanostructures from these 2D-nanosheets. Here we report the delamination of layered materials that belonging to two different classes - the cationic clay, montmorillonite, and the anionic clay, hydrotalcite - by intercalation of appropriate ionic surfactants followed by dispersion in a non-polar solvent. The solids are delaminated to single layers of atomic thickness with the ionic surfactants remaining tethered to the inorganic and consequently the nanosheets are electrically neutral. We then show that when dispersions of the two solids are mixed the exfoliated sheets self-assemble as a new layered solid with periodically alternating hydrotalcite and montmorillonite layers. The procedure outlined here is easily extended to other layered solids for creating new superstructures from 2D-nanosheets by self-assembly.