108 resultados para edge-shared bioctahedra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the coexistence of a primary and a secondary (cognitive) network when both networks use the IEEE 802.11 based distributed coordination function for medium access control. Specifically, we consider the problem of channel capture by a secondary network that uses spectrum sensing to determine the availability of the channel, and its impact on the primary throughput. We integrate the notion of transmission slots in Bianchi's Markov model with the physical time slots, to derive the transmission probability of the secondary network as a function of its scan duration. This is used to obtain analytical expressions for the throughput achievable by the primary and secondary networks. Our analysis considers both saturated and unsaturated networks. By performing a numerical search, the secondary network parameters are selected to maximize its throughput for a given level of protection of the primary network throughput. The theoretical expressions are validated using extensive simulations carried out in the Network Simulator 2. Our results provide critical insights into the performance and robustness of different schemes for medium access by the secondary network. In particular, we find that the channel captures by the secondary network does not significantly impact the primary throughput, and that simply increasing the secondary contention window size is only marginally inferior to silent-period based methods in terms of its throughput performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the utility of edge cracked semicircular disk (ECSD) for rapid assessment of fracture toughness using compressive loading. Continuing our earlier work on ECSD, a theoretical examination here leads to a novel way for synthesizing weight functions using two distinct form factors. The efficacy of ECSD mode-I weight function synthesized using displacement and form factor methods is demonstrated by comparing with finite element results. Theory of elasticity in conjunction with finite element method is utilized to analyze crack opening potency of ECSD under eccentric compression to explore newer configurations of ECSD for fracture testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we look for a rotating beam, with pinned-free boundary conditions, whose eigenpair (frequency and mode-shape) is same as that of a uniform non-rotating beam for a particular mode. It is seen that for any given mode, there exists a flexural stiffness function (FSF) for which the ith mode eigenpair of a rotating beam with uniform mass distribution, is identical to that of a corresponding non-rotating beam with same length and mass distribution. Inserting these derived FSF's in a finite element code for a rotating pinned-free beam, the frequencies and mode shapes of a non-rotating pinned-free beam are obtained. For the first mode, a physically realistic equivalent rotating beam is possible, but for higher modes, the FSF has internal singularities. Strategies for addressing these singularities in the FSF for finite element analysis are provided. The proposed functions can be used as test functions for rotating beam codes and also for targeted destiffening of rotating beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new species of lygosomatine scincid lizard is described from the sacred forests of Mawphlang, in Meghalaya, northeastern India. Sphenomorphus apalpebratus sp. nov. possesses a spectacle or brille, an unusual feature within the Scincidae, and a first for the paraphyletic genus Sphenomorphus. The new species is compared with other members of the genus to which it is here assigned, as well as to members of the lygosomatine genera Lipinia and Scincella from mainland India, the Andaman and Nicobar Islands, and south-east Asia, to which it also bears resemblance. The new taxon is diagnosable in exhibiting the following combination of characters: small body size (SVL to 42.0 mm); moveable eyelids absent; auricular opening scaleless, situated in a shallow depression; dorsal scales show a line of demarcation along posterior edge of ventral pes; midbody scale rows 27-28; longitudinal scale rows between parietals and base of tail 62-64; lamellae under toe IV 8-9; supraoculars five; supralabials 5-6; infralabials 4-5; subcaudals 92; and dorsum golden brown, except at dorsal margin of lateral line, which is lighter, with four faintly spotted lines, two along each side of vertebral row of scales, that extend to tail base. The new species differs from its congeners in the lack of moveable eyelids, a character shared with several distantly related scincid genera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics and interactions of edge dislocations in a nearly aligned sheared lamellar mesophase is analysed to provide insights into the relationship between disorder and rheology. First, the mesoscale permeation and momentum equations for the displacement field in the presence of external forces are derived from the model H equations for the concentration and momentum field. The secondary flow generated due to the mean shear around an isolated defect is calculated, and the excess viscosity due to the presence of the defect is determined from the excess energy dissipation due to the secondary flow. The excess viscosity for an isolated defect is found to increase with system size in the cross-stream direction as L-3/2 for an isolated defect, though this divergence is cut-off due to interactions in a defect suspension. As the defects are sheared past each other due to the mean flow, the Peach-Koehler force due to elastic interaction between pairs of defects is found to cause no net displacement relative to each other as they approach from large separation to the distance of closest approach. The equivalent force due to viscous interactions is found to increase the separation for defects of opposite sign, and decrease the separation for defects of same sign. During defect interactions, we find that there is no buckling instability due to dilation of layers for systems of realistic size. However, there is another mechanism, which is the velocity difference generated across a slightly deformed bilayer due to the mean shear, which could result in the creation of new defects. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-task learning solves multiple related learning problems simultaneously by sharing some common structure for improved generalization performance of each task. We propose a novel approach to multi-task learning which captures task similarity through a shared basis vector set. The variability across tasks is captured through task specific basis vector set. We use sparse support vector machine (SVM) algorithm to select the basis vector sets for the tasks. The approach results in a sparse model where the prediction is done using very few examples. The effectiveness of our approach is demonstrated through experiments on synthetic and real multi-task datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2CoSnS4 (CCTS) quaternary semiconducting nanoparticles with size distribution from 20 nm to 60 nm were synthesized by one-pot low temperature time and surfactant dependent hydrothermal route. Nanoparticles were characterized structurally and optically. Excitation dependent fluorescence exhibited a dynamic stoke shift referring to the Red-Edge-Effect with peak shifting by a greater magnitude (>100 nm) towards red side, in all the samples. Hybrid devices, fabricated from CCTS nanoparticle inorganic counterparts benefitting from the conjugation of organic P3HT polymer matrix, were demonstrated for photodetection under infra-red and A. M 1.5 solar light illuminations. Faster rise and decay constants of 37 ms and 166 ms, with one order photocurrent amplification from 1.6 x 10(-6) A in the dark to 6.55 x 10(-5) A, upon the 18.50 mW cm(-2) IR lamp illumination, make CCTS a potential candidate for photodetector and photovoltaic applications. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose to employ bilateral filters to solve the problem of edge detection. The proposed methodology presents an efficient and noise robust method for detecting edges. Classical bilateral filters smooth images without distorting edges. In this paper, we modify the bilateral filter to perform edge detection, which is the opposite of bilateral smoothing. The Gaussian domain kernel of the bilateral filter is replaced with an edge detection mask, and Gaussian range kernel is replaced with an inverted Gaussian kernel. The modified range kernel serves to emphasize dissimilar regions. The resulting approach effectively adapts the detection mask according as the pixel intensity differences. The results of the proposed algorithm are compared with those of standard edge detection masks. Comparisons of the bilateral edge detector with Canny edge detection algorithm, both after non-maximal suppression, are also provided. The results of our technique are observed to be better and noise-robust than those offered by methods employing masks alone, and are also comparable to the results from Canny edge detector, outperforming it in certain cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of Nd1-xYxMnO3 (x-0-0.5) is studied using x-ray absorption near-edge structure (XANES) spectroscopy at the Mn K-edge along with the DFT-based LSDA+U and real space cluster calculations. The main edge of the spectra does not show any variation with doping. The pre-edge shows two distinct features which appear well-separated with doping. The intensity of the pre-edge decreases with doping. The theoretical XANES were calculated using real space multiple scattering methods which reproduces the entire experimental spectra at the main edge as well as the pre-edge. Density functional theory calculations are used to obtain the Mn 4p, Mn 3d and O 2p density of states. For x=0, the site-projected density of states at 1.7 eV above Fermi energy shows a singular peak of unoccupied e(g) (spin-up) states which is hybridized Mn 4p and O 2p states. For x=0.5, this feature develops at a higher energy and is highly delocalized and overlaps with the 3d spin-down states which changes the pre-edge intensity. The Mn 4p DOS for both compositions, show considerable difference between the individual p(x), p(y) and p(z)), states. For x=0.5, there is a considerable change in the 4p orbital polarization suggesting changes in the Jahn-Teller effect with doping. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosized fullerene solvates have attracted widespread research attention due to recent interesting discoveries. A particular type of solvate is limited to a fixed number of solvents and designing new solvates within the same family is a fundamental challenge. Here we demonstrate that the hexagonal closed packed (HCP) phase of C-60 solvates, formed with m-xylene, can also be stabilized using toluene. Contrary to the notion on their instability, these can be stabilized from minutes up to months by tuning the occupancy of solvent molecules. Due to high stability, we could record their absorption edge, and measure excitonic life-time, which has not been reported for any C-60 solvate. Despite being solid, absorbance spectrum of the solvates is similar in appearance to that of C-60 in solution. A new absorption band appears at 673 nm. The fluorescence lifetime at 760 nm is similar to 1.2 ns, suggesting an excited state unaffected by solvent-C-60 interaction. Finally, we utilized the unstable set of HCP solvates to exchange with a second solvent by a topotactic exchange mechanism, which rendered near permanent stability to the otherwise few minutes stable solvates. This is also the first example of topotactic exchange in supramolecular crystal, which is widely known in ionic solids. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Majorana modes, both equilibrium and Floquet, which can appear at the edges of the Kitaev model on the honeycomb lattice. We first present the analytical solutions known for the equilibrium Majorana edge modes for both zigzag and armchair edges of a semi-infinite Kitaev model and chart the parameter regimes in which they appear. We then examine how edge modes can be generated if the Kitaev coupling on the bonds perpendicular to the edge is varied periodically in time as periodic delta-function kicks. We derive a general condition for the appearance and disappearance of the Floquet edge modes as a function of the drive frequency for a generic d-dimensional integrable system. We confirm this general condition for the Kitaev model with a finite width by mapping it to a one-dimensional model. Our numerical and analytical study of this problem shows that Floquet Majorana modes can appear on some edges in the kicked system even when the corresponding equilibrium Hamiltonian has no Majorana mode solutions on those edges. We support our analytical studies by numerics for a finite sized system which show that periodic kicks can generate modes at the edges and the corners of the lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude approximate to e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi-2 Se-3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.