282 resultados para dye doped waveguide
Resumo:
The binding of 1-anilino-8-naphthalene-sulfonic acid to globular proteins at acidic pH has been investigated by electrospray ionization mass spectrometry (ESIMS). Mass spectra of apomyoglobin recorded in the pH range 2−7 establish that maximal ANS binding is observed at pH 4.0. As many as seven distinct species may be observed in the gas phase which correspond to protein molecules containing one to six molecules of bound ANS. At neutral pH only a single molecule of ANS is bound. In the case of cytochrome c, maximal binding is observed at pH 4.0, with five molecules being bound. Binding is suppressed at neutral pH. In both cases ESIMS demonstrates maximal ANS binding at pH values where the proteins have been reported to exist in molten globule states. ANS binding is not observed for lysozyme, which has a tightly folded structure over the entire pH range. Reduction of disulfide bonds in lysozyme leads to the detection of ANS-bound species at neutral pH. Binding is suppressed at low pH due to complete unfolding of the reduced protein. The results suggest that ESIMS may provide a convenient method of probing the stoichiometry and distribution of dye complexes with molten protein globules
Resumo:
Using dynamic TG in H2, X-ray powder diffraction and Mössbauer Spectroscopy the reactivities fot hydrogen reduction of Fe2O3 prepared at different temperatures, Fe2O3 doped with oxides of Mn, Co, Ni and Cu prepared at 300DaggerC from nitrate precursors and intermediate spinels derived from above samples during reduction have been explored. The reactivity is higher for finely divided Fe2O3 prepared at 250DaggerC. The reduction is retarded by Mn, marginally affected by Co and accelerated by Ni and Cu, especially at higher (5 at.%) dopant concentration. These reactivities confirmed also by isothermal experiments, are ascribed to the nature of disorder in the metastable intermediate spinels and to hydrogen rsquospill overrsquo effects.
Resumo:
The conductivity of highly doped polypyrrole is less than that of intermediately doped samples, by two orders of magnitude, at 4.2 K. This may be due to more number of bipolarons in highly doped samples. Bipolarons require four times more activation energy than single polarons to hop by thermally induced virtual transitions to intermediate dissociated polaron states than by the nondissociated process. The conduction process in these polyconjugated systems involve ionization from deep trapped states, having a View the MathML source dependence, hopping from localised states, having View the MathML source dependence, and intersite tunnel percolation, having T−1 dependence. The interplay of these factors leads to a better fit by View the MathML source. The mechanism for this exponential behaviour need not be same as that of Motts variable range hopping. Conduction by percolation is possible, if an infinite cluster of chains can be connected by impurity centers created by dopant ions. The tendency for the saturation of conductivity at very low temperatures is due to the possibility of intersite tunnel percolation is disordered polaronic systems.
Resumo:
X-ray and ultraviolet photoelectron spectroscopy have been employed to investigate the high temperature metal-insulator transitions in V2O3 and (V0.99Cr0.01)2O3. The high temperature transitions are associated with more gradual changes in the 3d bands compared to the low-temperature transitions
Resumo:
We report the rapid solution combustion synthesis and characterization of Ag-substituted LaMnO3 phases at relatively low temperature using oxalyl dihydrazide, as fuel. Structural parameters were refined by the Rietveld method using powder X-ray diffraction data. While the parent LaMnO3 crystallizes in the orthorhombic structure, the Ag-substituted compounds crystallize in the rhombohedral symmetry. On increasing Ag-content, unit cell volume and Mn-O-Mn bond angle decreases. The Fourier transform infra red spectrum shows two absorption bands corresponding to Mn-O stretching vibration (v(s) mode) and Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions x = 0.0, 0.05 and 0.10, respectively. Electrical resistivity measurements reveal that composition-controlled metal to insulator transition, with the maximum metal to insulator being 280 K for the composition La0.75Ag0.25MnO3. Increase in magnetic moment was observed with increase in Ag-content. The maximum magnetic moment of 35 emu/g was observed for the composition La0.80Ag0.20MnO3. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine.
Resumo:
The electrical resistance of the critical binary liquid system C6H12+(CH3CO)2O is measured both in the pure form and when the system is doped with small amounts (≈ 100 ppm) of H2O impurities. Near Tc, the resistance varies as dR/dT = A1+A2 (T-Tc)-b with b ≈ 0.35. Neither the critical exponent b nor the amplitude ratio A1/A2 are affected by the impurities. A sign reversal of dR/dT is noticed at high temperatures T much greater-than Tc.
Resumo:
Thermal expansion of several compositions of Sr and Mg-doped LaGaO3 including an A-site deficient composition (La0.9Sr0.1)(0.98)(Ga0.8Mg0.2)O-2.821 were measured in the temperature range from 298 to 1273 K. The effect of doping on thermal expansion was studied by varying the composition at one site of the perovskite structure (either A or B), while keeping the composition at the other site invariant. Thermal expansion varied nonlinearly with temperature and exhibited an inflexion between 550 and 620 K, probably related to the change in crystal structure from orthorhombic to rhombohedral. The dependence of average thermal expansion coefficient (alpha (av)) on the dopant concentration on either A or B site of the perovskite structure was found to be linear, when the composition at the other site was kept constant. Mg doping on the B-site had a greater effect on the average thermal expansion coefficient than Sr doping on the A-site. Cation deficiency at the A-site decreases thermal expansion when compositions at both sites are held constant.
Resumo:
A report of the design, development ana periom~ance characteristics of a Q-band (8 nim) confoal. mned, aielectric lens beam waveguide is presented.
Magnetic properties of pure, Sr- and Ca-Doped La2NiO4+δ ceramics: Onset of high-Tc superconductivity
Resumo:
We present the results for the temperature and field dependence of the magnetic for ceramic materials of the composition La2−xMxNiO4, with M=Sr or Ca and 0≤x≤0.4. The onset of a strong diamagnetism has been observed at temperatures between 8 and 70 K, depending on sample composition, annealing conditions. and thermal cycling procedures. The results are similar to those obtained earlier for monocrystalline samples and are likewise interpreted as due to the onset of superconductivity in a minority phase. A comparison with the results for superconducting La1.8Sr0.2Cu0.9Ni0.1O4 ceramics is also made; this illustrates some unique features of the nickelate systems, such as the high values of the critical fields Hc1 and Hc2. The differences between monocrystalline and ceramic systems are also discussed.
Resumo:
We observe a sharp feature in the ultra-low-temperature magnetoconductivity of degenerately doped Ge:Sb at H∼25 kOe, which is robust up to at least three times the critical density for the insulator-metal transition. This field corresponds to a low-energy scale characteristic of the special nature of antimony donors in germanium. Its presence and sensitivity to uniaxial stress confirm the notion of metallic impurity bands in doped germanium.
Resumo:
The performance parameters e.g. non-linear coefficient (α) and breakdown electric field (Eb1mA/cm2) of ZnO based ceramic varistors were found to improve after the addition of 10 mol% MgO. The improvement in the varistor properties is examined by ac impedance spectroscopy technique in the frequency range (1 Hz–10 MHz) between temperature 25–250°C and understood in terms of differing contributions from the equivalent electrical circuit elements.
Resumo:
We investigate an optical waveguide system consisting of an unclad fiber core suspended at a constant distance parallel to the surface of a planar waveguide. The coupling and propagation of light in the combined system is studied using the three-dimensional explicit finite difference beam propagation method with a nonuniform mesh configuration. The power loss in the fiber and the field distribution in the waveguide are studied as a function of various parameters, such as index changes, index profile, and propagation distance, for the combined system.
Resumo:
We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.
Resumo:
A simple yet accurate equivalent circuit model was developed for the analysis of slow-wave properties (dispersion and interaction impedance characteristics) of a rectangular folded-waveguide slow-wave structure. Present formulation includes the effects of the presence of beam-hole in the circuit, which were ignored in existing approaches. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures operating in Ka- and Q-bands, and close agreements were observed. The analysis was extended for demonstrating the effect of the variation of beam-hole radius on the RF interaction efficiency of the device. (C) 2009 Elsevier GmbH. All rights reserved.