321 resultados para distance estimation
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
1. 1. A simple method has been devised for the estimation of phloroglucinol based on the formation of an intense colored compound with a modified Ehrlich reagent in the presence of trichloroacetic acid. Some factors affecting the formation of color have been studied. 2. 2. Careful regulation of trichloroacetic acid content in the system permits its estimation in 1–15 μg in the micro range and in 10–50 μg in the macro range. Phloroglucinol lends itself to ready separation by paper chromatography and estimation after clution from paper.
Resumo:
1. A simple method has been devised for the estimation of siderochromes based on their reaction with Folin-Ciocalteu reagent to give a blue complex under alkaline conditions. 2. The applicability of the method to biological systems has been tested with N. crassa and concentrations in the ranges 5–50 μg and 1–10 μg can be accurately estimated with an over-all recovery of 95%.
Resumo:
The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.
Resumo:
Dithiocarbamates have been estimated previously by reaction with a strong acid, the carbon disulfide evolved being converted into a xanthate and the latter estimated iodimetrically. In the present method, a water-soluble dithiocarbamate is reacted with a decinormal mineral acid and the excess acid is determined to compute the amount of dithiocarbamate present. This method is applicable for the determination of a dithiocarbamate in a mixture containing thiuram disulfide.
Resumo:
A comparatively simple and rapid method for the identification, estimation and preparation of fatty acids has been developed, using reversed phase circular paper chromatography. The method is also suitable for the analysis of “Critical Pairs” of fatty acids and for the preparation of fatty acids. Further, when used at a higher temperature, the method is more sensitive in revealing the presence of even traces of higher fatty acids in the seeds of Adenanthera pavonina.
Resumo:
Iodimetric estimation of dialkyl dithiocarbamate in alcoholic solution is not accurate. The method has not met with success for the water-soluble dithiocarbamates before. A simple and accurate iodimetric method has been developed for the estimation of water-soluble dithiocarbamates. The success of the method is due to the removal of the oxidation product which interferes during the titration with iodine.
Resumo:
Imagining a disturbance made on a compressible boundary layer with the help of a heat source, the critical viscous sublayer, through which the skin friction at any point on a surface is connected with the heat transferred from a heated element embedded in it, has been estimated. Under similar conditions of external flow (Ray1)) the ratio of the critical viscous sublayer to the undisturbed boundary layer thickness is about one-tenth in the laminar case and one hundredth in the turbulent case. These results are similar to those (cf.1)) found in shock wave boundary layer interaction problems.
Resumo:
Previous attempts for the quantitative estimation of lithium as orthophosphate, employing an alkali metal phosphate, have not been successful. A method, is described for the estimation of lithium as trilithium phosphate from 60% ethyl alcohol solution at 65° to 70° C., employing potassium phosphate reagent, at pH 9.5. The method is applicable in the presence of varying amounts of sodium and/or potassium cations and chloride, sulfate, nitrate, and phosphate anions.
Resumo:
By observing mergers of compact objects, future gravity wave experiments would measure the luminosity distance to a large number of sources to a high precision but not their redshifts. Given the directional sensitivity of an experiment, a fraction of such sources (gold plated) can be identified optically as single objects in the direction of the source. We show that if an approximate distance-redshift relation is known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the self-calibrated best possible distance-redshift relation and provide an analytical expression for the accuracy achievable. We derive the lower limit on the total number of sources that is needed to achieve this accuracy through self-calibration. We show that this limit depends exponentially on the beam width and give estimates for various experimental parameters representative of future gravitational wave experiments DECIGO and BBO.
Resumo:
This paper aims at evaluating the methods of multiclass support vector machines (SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.
Resumo:
For structured-light scanners, the projective geometry between a projector-camera pair is identical to that of a camera-camera pair. Consequently, in conjunction with calibration, a variety of geometric relations are available for three-dimensional Euclidean reconstruction. In this paper, we use projector-camera epipolar properties and the projective invariance of the cross-ratio to solve for 3D geometry. A key contribution of our approach is the use of homographies induced by reference planes, along with a calibrated camera, resulting in a simple parametric representation for projector and system calibration. Compared to existing solutions that require an elaborate calibration process, our method is simple while ensuring geometric consistency. Our formulation using the invariance of the cross-ratio is also extensible to multiple estimates of 3D geometry that can be analysed in a statistical sense. The performance of our system is demonstrated on some cultural artifacts and geometric surfaces.
Resumo:
Non-Gaussianity of signals/noise often results in significant performance degradation for systems, which are designed using the Gaussian assumption. So non-Gaussian signals/noise require a different modelling and processing approach. In this paper, we discuss a new Bayesian estimation technique for non-Gaussian signals corrupted by colored non Gaussian noise. The method is based on using zero mean finite Gaussian Mixture Models (GMMs) for signal and noise. The estimation is done using an adaptive non-causal nonlinear filtering technique. The method involves deriving an estimator in terms of the GMM parameters, which are in turn estimated using the EM algorithm. The proposed filter is of finite length and offers computational feasibility. The simulations show that the proposed method gives a significant improvement compared to the linear filter for a wide variety of noise conditions, including impulsive noise. We also claim that the estimation of signal using the correlation with past and future samples leads to reduced mean squared error as compared to signal estimation based on past samples only.