152 resultados para dimethylthallium(III)
Resumo:
Kinetics of the interaction of Au(III) with native calf thymus DNA has been studied spectrophotometrically to determine the kinetic parameters and to examine their dependency on the concentrations of DNA and Au(III), temperature, ionic strength and pH. The reaction is of the first order with respect to both the nucleotide unit of DNA and Au(III) in the stoichiometry of 2∶1 respectively. The rate constants vary with the initial ratio of DNA to Au(III) and is attributed to the effect of free chloride ions and the existence of a number of reaction sites with slight difference in the rate constants. The activation energies of this interaction have been found to be 14–16 kcal/mol. From the effect of ionic strength the reaction is found to occur between a positive and a negative ion in the rate-limiting step. The logarithm of rate constants are the linear function of pH and the slopes are dependent on ther-values. A plausible mechanism has been proposed which involves a primary dissociation of the major existing species (AuCl2(OH)2)−, to give (AuCl2)+ which then reacts with a site in the nucleotide unit of DNA in the rate-liminting step followed by a rapid binding to another site on the complementary strand of the DNA double helix. There exist a number of binding sites with slight difference in reactivity.
Resumo:
The nature of interaction of Rh(III) with DNA was studied using viscometry and ultraviolet, visible and infrared spectroscopy. The rate of interaction was found to be very slow at room temperature taking several days for completion. The time needed to attain equilibrium is dependent on the concentrations of metal ion, higher the concentration shorter the period required for equilibration. Visible spectra of Rh(III) were found to alter considerably in the presence of DNA. An increase in absorbance and a red shift were observed in the ultraviolet spectra of DNA in the presence of Rh(III). The specific viscosity of DNA solution was found to decrease asymptotically with time and concentrations of metal ion. The melting temperature of DNA was found to increase at lower metal ion concentrations, whereas at higher values a decrease was obtained. At still higher metal ion concentrations (Image ) a ‘nonmeltable state’ of DNA was observed. These results seem to indicate that Rh(III) binds both with the phosphate and the bases of the DNA.
Resumo:
The problem of non-destructive determination of the state-of-charge of zinc- and magnesium-manganese dioxide dry batteries is examined experimentally from the viewpoint of internal impedance and open-circuit voltage at equilibrium. It is shown that the impedance is mainly charge-transfer controlled at relatively high states-of-charge and progressively changes over to diffusion control as the state-of-charge decreases in the case of zinc-manganese dioxide dry batteries. On the other hand, the impedance is mainly diffusion controlled for undischarged batteries but becomes charge-transfer controlled as soon as there is some discharge in the case of magnesium-manganese dioxide batteries. It is concluded that the determination of state-of-charge is not possible for both types of batteries by the measurement of impedance parameters due to film-induced fluctuations of these parameters. The measurement of open-circuit voltage at equilibrium can be used as a state-of-charge indicator for Zn-MnO2 batteries but not for Mg-MnO2 batteries.
Resumo:
A series of mixed ligand cobalt(III) complexes having the general formula Co(EA)X [where EA = dianion of N,N′-ethylenebis(acetylacetonimine) and X = anion of isonitroso-acetylacetone, IAA; isonitrosobenzoylacetone, IBA; isonitrosodibenzoylmethane, IDBM; isonitrosoethylacetoacetate, IEA; isonitrosoacetoacetanillide, IAN; isonitrosoethylmethylketone, IEMK; isonitrosobenzylmethylketone, IBMK and isonitrosopropiophenone, IPP] have been synthesised and characterised. A facial-cis-β structure (cis with respect to the coordinated two oxygen atoms of EA) with N,N,N,O,O,O ligational environment has been assigned for the complexes. The characterisation of the complexes has been based upon chemical analysis, electrical conductivity, magnetic moment, IR, PMR and electronic spectra.
Resumo:
A series of rhodium(III) complexes of certain hydroxyimino-beta-diketones were synthesised and their structures assigned on the basis of elemental analyses and i.r. and1H n.m.r. spectral studies, The complexes exhibit coordination through carbonyl oxygen and nitrogen of the hydroxy-imino groups in the ligands.1H and13C n.m.r. studies show that the ligands exist in the isonitroso form in CDCl3.
Resumo:
The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2]−, Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.
Resumo:
Diruthenium(II1) compounds, Ru20(02CAr)2(MeCN)4(PPh3)2(C104)(z1~) Hazn0d R U ~ O ( O ~ C A ~ ) ~(2() P(PA~r ~= )P~h,C6H4-p-OMe), were prepared by reacting R U ~ C I ( O ~ CaAnd~ P)P~h 3 in MeCN and characterized by analytical and spectral data. The molecular structures of 1 with Ar = Ph and of 2 with Ar = C&p-OMe were determined by X-ray crystallography. Crystal data for Ru~~(~~CP~)~(M~CN),(PP~(~la)):~ m(oCnIoc~lin,ic), n~/~cH, ~a O= 27.722 (3) A, b = 10.793 (2) A, c = 23.445 ( 2 )A , fi = 124.18 (l)', V = 5803 A3, and 2 = 4. Cr stal data for Ru~O(O~CC~H~-~-O(M2b~): )o~rth(orPhoPm~bi~c, )Pn~n a, a = 22.767 (5) A, b = 22.084 (7) A, c = 12.904 (3) 1, V = 6488 AS; and 2 = 4. Both 1 and 2 have an (Ruz0(02CAr)z2t1 core that is analogous to the diiron core present in the oxidized form of the nonheme respiratory protein hemerythrin. The Ru-Ru distances of 3.237 (1) and 3.199 ( I ) A observed in 1 and 2, respectively, are similar to the M-M distances known in other model systems. The essentially diamagnetic nature of 1 and 2 is due to the presence of two strongly interacting t22 Ru"' centers. The intense colors of 1 (blue) and 2 (purple) are due to the charge-transfer transition involving an ( R ~ ~ ( f i - 0m)o~ie~ty.) The presence of labile MeCN and carboxylato ancillary ligands in I and 2, respectively, makes these systems reactive toward amine and heterocyclic bases.
Resumo:
Titanium(III) tetrahydroborate formed by the reaction of titanium tetrachloride and benzyltriethylammonium borohydride (1:4) reacts with alkenes in dichloromethane (-20-degrees-C) very readily to yield directly the corresponding alcohols in excel lent yields after a simple aqueous work up.
Resumo:
A mechanism involving the intermediacy of nitrene 5, formed from the oxime of spironaphthalenone 1 by acid catalysed dehydration, has been proposed to explain the formation of pyrrolotropones/pyrrolo esters from spironaphthalenones. The initially formed nitrene rearranges to the isopyrrole 6, which either undergoes sigmatropic migration to the pyrrolotropone 2 or adds alcohol to form the pyrrolo ester depending on substitution at 1′ position. The isopyrrole intermediate 6 has been trapped as a Diels-Alder adduct 8.
Resumo:
Reaction of [Ru2O(O2CR)2(MeCN)4(PPh3)2](ClO4)2 (1) with 1,2-diaminoethane (em) in MeOH---H2O yielded a mixture of products, from which a purple diamagnetic and 1:2 electrolytic diruthenium(III) complex, [Ru2O(O2CR)2(en)2(PPh3)2](ClO4)2 (2), was isolated along with a trace by-product of [Ru2O(O2CR)2(en)2(PPh3)2](ClO4)(MeCONH) (3) (R = C6H4-p-X : X = H, a; OMe, b; Me, c). Complex 3b has been characterized by X-ray diffraction analysis. The structure shows the presence of a (Ru2(?-O)(?-O2CR)22+)_core, with the metal centre bonded to an unidentate PPh3 and a bidentate chelating en terminal ligand. The Ru�Ru distance and the Ru�O�Ru angle in the core are 3.255(3) Å and 119.1(4)°. The amidate anion, formed presumably by nucleophilic attack of OH? on the MeCN ligand in complex 1, remains uncoordinated to the metal. In MeCN/0.1 M [NBun4]ClO4 complex 2 exhibits a nearly reversible Ru2III,III?Ru2III,IV couple near 0.9 V and an irreversible Ru2III,III?Ru2III,II process at ?0.6 V (vs S.C.E.). The mechanistic aspects of the substitution and nucleophilic reactions in the formation of complexes 2 and 3 are discussed. References
Resumo:
Blue coloured, unstable, essentially diamagnetic and non-electrolytic diruthenium(III) complexes of the formation [Ru2O(O2CR)4(en)2(PPh3)2] were prepared by reacting [Ru2O(O2CR)4(PPh3)2] with 1,2-diaminoethane (en) in CH2Cl2 (R = C6H4-p-X; X = H, Me and OMe). The molecular structure of the complexes is proposed as [{(?1-O2CR)(?1-en)(PPH3)Ru}2(?-O)(?-O2CR)2] based on the 1H NMR spectral data. The electronic spectra of the complexes display a band near 569 nm with a shoulder at 630 nm. In CH2Cl2-0.1 M [Bun4N]ClO4, the complexes exhibit redox couples Ru2III,III/Ru2III,IV and Ru2III,IV/Ru2IV,IV near 0.1 and 1.2 V (vs SCE), respectively. The potentials are the lowest among diruthenium(III) complexes with a similar core structure.
Resumo:
We describe the synthesis structures and dielectric properties of new perovskite oxides of the formula (Ba3MTiMO9)-Ti-III-O-V for M-III = Fe Ga Y Lu and M-V = Nb Ta Sb While M-V = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where M-III/Ti/M-V metal-oxygen octahedra are corner connected the M-V = Sb oxides show a distinct preference for the 6H structure where Sb-V/Ti-IV metal-oxygen octahedra share a common face forming (Sb Ti)O-9 dimers that are corner-connected to the (MO6)-O-III octahedra The preference of antimony oxides (Sb-V 4d(10)) for the 6H structure which arises from a special Sb-V-O chemical bonding that tends to avoid linear Sb-O-Sb linkages unlike Nb-V/Ta-V d(0) atoms which prefer similar to 180 degrees Nb/Ta-O-Nb/Ta linkages - is consistent with the crystal chemistry of M-V-O oxides in general The dielectric properties reveal a significant difference among Mill members All the oxides with the 3C structure excepting those with Mill = Fe show a normal low loss dielectric behaviour with epsilon = 20-60 in the temperature range 50-400 degrees C the M-III = Fe members with this structure (M-V = Nb Ta) display a relaxor-like ferroelectric behaviour with large E values at frequencies <= 1 MHz (50-500 degrees C) (C) 2010 Elsevier Masson SAS All rights reserved