139 resultados para decomposition rank
Resumo:
A novel method of detecting the charge-carrying species in inorganic decomposable salts is described. In ammonium perchlorate it is observed that the charge-carrying species at temperatures 150 and 230°C are oppositely charged; i.e., they are negatively charged (ClO−4 ions) at 230°C and positively charged (H+ or NH+4) at 150°C.
Resumo:
The mechanism of thermal decomposition of tetramethylammonium nitrate has been investigated by thermogravimetry and mass spectrometry. The activation energy for the decomposition has been determined by isothermal decomposition technique using thermogravimetry and by monitoring mass spectrometrically the formation of trimethylamine. The activation energies determined in both the cases compare well, suggesting that the decomposition proceeds via dissociation of tetramethylammonium nitrate into trimethylamine and methylnitrate.
Resumo:
Addition of trimethylammonium perchlorate to potassium perchlorate (KP) catalyzes its thermal decomposition. However, although the additive sensitises KP-PU propellant decomposition, its combustion is desensitised. The observed effects have been explained in terms of the role played by the early formation of potassium chloride.
Resumo:
The thermal decomposition of three commercial samples of carboxy-terminated polybutadiene (PBCT) resins was studied by thermogravimetric analysis (TGA) at heating rates varying from 2° to 100°C/min. Kinetic parameters of the decomposition process at different heating rates were evaluated by means of the Fuoss method.1 The decomposition process and the activation energy values are found to be dependent on heating rate. Mass-spectrometric analysis of the decomposition products shows that the pyrolysis products of PBCT resins are mainly low molecular weight hydrocarbons: ethylene, acetylene, butadiene, propadiene, vinylcyclohexene, etc. The rates of evolution of these hydrocarbon products vary with the carboxy content of the PBCT resin. Based on this, a carbonium ion mechanism has been suggested for the thermal decomposition. The data generated from this work are of importance for a consideration of the mechanism of combustion of composite solid propellants based on PBCT binders.
Resumo:
Graphene oxide-intercalated alpha-metal hydroxides were prepared using layers from the delaminated colloidal dispersions of cetyltrimethylammonium-intercalated graphene oxide and dodecylsulfate-intercalated alpha-hydroxide of nickel/cobalt as precursors. The reaction of the two dispersions leads to de-intercalation of the interlayer ions from both the layered solids and the intercalation of the negatively charged graphene oxide sheets between the positively charged layers of the alpha-hydroxide. Thermal decomposition of the intercalated solids yields graphene/nanocrystalline metal oxide composites. Electron microscopy analysis of the composites indicates that the nanoparticles are intercalated between graphene layers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Equations for solid-state decompositions which are controlled by the phase-boundary movement and nucleation have been examined using ammonium perchlorate/polystyrene propellant decomposition at 503 K and 533 K. It was found that 3 different equations governed by the nucleation process show a good fit of data at these temperatures. However, the best fit was obtained for the following Avrami-Erofeev equation, [-In (1 - α]1/4=kt.
Resumo:
Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2OsCO3, which decomposes between 600 and 800 ~ and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.
Resumo:
Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2O5CO3, which decomposes between 600 and 800° and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.Die Bedingungen für die Herstellung von stöchiometrischem Barium-zirconyl-oxalat Heptahydrat (BZO) wurden standardisiert. Die thermische Zersetzung von BZO wurde unter Einsatz der TG-, DTG- und DTA, sowie der chemischen und Gasanalyse untersucht. Die Zersetzung verläuft über vier Stufen und wird von der umgebenden Gasathmosphäre nicht besonders beeinflusst. Sowohl die Dehydratisierung als auch die Oxalatzersetzung erfolgt in zwei Stufen. Die Bildung einer intermediären Übergangsverbindung mit sowohl Oxalat- als auch Carbonatgruppen wirken hierbei mit. Die Zersetzung der Oxalatgruppen ergibt ein Carbonat der Zusammensetzung Ba2Zr2O5CO3, das zwischen 600 und 800° zersetzt wird und Bariumzirconat ergibt. Die Angaben der chemischen Analyse, der IR-Spekren und der Röntgen-Pulver-Diffraktion unterstützen die Identität der Intermediärverbindung als eine separate Einheit.On a standardisé les conditions de préparation de l'oxalate heptahydraté de zirconyle et de baryum (BZO) stoechiométrique. On a étudié la décomposition thermique de BZO par TG, TGD et ATD ainsi que par analyses chimiques et analyses des gaz. La décomposition a lieu en quatre étapes et n'est pas trop influencée par l'atmosphère ambiante. La déshydratation et la décomposition de l'oxalate ont lieu en deux étapes. Il se forme un composé intermédiaire de transition contenant à la fois les groupes oxalate et carbonate. La décomposition des groupes oxalate fournit un carbonate de composition Ba2Zr2O5CO3 qui se décompose entre 600 et 800° pour fournir du zirconate de baryum. L'analyse chimique, les spectres IR et la diffraction des rayons X sur poudre, apportent les preuves de l'existence d'un composé intermédiaire comme entité séparée.
Resumo:
Thermal decomposition of ethylene diamine diperchlorate (EDDP) has been studied by differential-thermal analysis (DTA), thermogravimetric analysis (TGA), isothermal weight-loss measurements and mass-spectrometric analysis of the decomposition products. It has been observed that EDDP decomposes in two temperature regions. The low-temperature decomposition stops at about 35 to 40 percent weight loss below 250°C. The reason for the low-temperature cessation may be the adsorption of excess ethylene diamine on the crystal surface of EDDP. An overall activation energy of 54 kcal per mole has been calculated for the thermal decomposition of EDDP. Mass-spectrometric analysis shows that the decomposition products are mainly CO2, H2O, HCl and N2. The following stoichiometry has been proposed for the thermal decomposition of EDDP: (−CH2NH3CIO4)2→2CO2O+2HCl+N2
Resumo:
Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t) .