143 resultados para crustal stretching
Resumo:
A reversible pressure-induced phase transition in lanthanum nickel ferrate (LaNi0.5Fe0.5O3) manifests itself in the infrared spectrum of the transition metal-oxygen stretching (nu(TM-O)) modes by the emergence of new peaks at pressures greater than similar to 1.4 x 10(9) Pa. Analogies to this transition are made by considering charge transfer in dilanthanum cuprate (La2CuO4) and its modification by partial substitution of copper ions by chromium ions.
Resumo:
The similar to 2500 km-long Himalaya plate boundary experienced three great earthquakes during the past century, but none of them generated any surface rupture. The segments between the 1905-1934 and the 1897-1950 sources, known as the central and Assam seismic gaps respectively, have long been considered holding potential for future great earthquakes. This paper addresses two issues concerning earthquakes along the Himalaya plate boundary. One, the absence of surface rupture associated with the great earthquakes, vis-a-vis the purported large slip observed from paleoseismological investigations and two, the current understanding of the status of the seismic gaps in the Central Himalaya and Assam, in view of the paleoseismological and historical data being gathered. We suggest that the ruptures of earthquakes nucleating on the basal detachment are likely to be restricted by the crustal ramps and thus generate no surface ruptures, whereas those originating on the faults within the wedges promote upward propagation of rupture and displacement, as observed during the 2005 Kashmir earthquake, that showed a peak offset of 7 m. The occasional reactivation of these thrust systems within the duplex zone may also be responsible for the observed temporal and spatial clustering of earthquakes in the Himalaya. Observations presented in this paper suggest that the last major earthquake in the Central Himalaya occurred during AD 1119-1292, rather than in 1505, as suggested in some previous studies and thus the gap in the plate boundary events is real. As for the Northwestern Himalaya, seismically generated sedimentary features identified in the 1950 source region are generally younger than AD 1400 and evidence for older events is sketchy. The 1897 Shillong earthquake is not a decollement event and its predecessor is probably similar to 1000 years old. Compared to the Central Himalaya, the Assam Gap is a corridor of low seismicity between two tectonically independent seismogenic source zones that cannot be considered as a seismic gap in the conventional sense. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of similar to 40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 angstrom, c=5.27563 angstrom and V=47.684 (angstrom)(3)) are found to be greater than that of undoped ZnO (a=3.19993 angstrom, c=5.22546 angstrom and V=46.336 (angstrom)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at similar to 3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to T-4(1) -> (6)A(1) transition of Mn2+ ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to Mn-55 hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn2+ ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (chi) have been evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The ability of a metal to resist strain localisation and hence reduction in local thickness, is a most important forming property upon stretching. The uniform strain represents in this regard a critical factor to describe stretching ability - especially when the material under consideration exhibits negative strain rate sensitivity and dynamic strain ageing (DSA). A newly developed Laser Speckle Technique (LST), e.g. see [1], was used in-situ during tensile testing with two extensometers. The applied technique facilitates quantitative information on the propagating plasticity (i.e. the so-called PLC bands) known to take place during deformation where DSA is active. The band velocity (V-band), and the bandwidth (W-band) were monitored upon increasing accumulated strain. The knowledge obtained with the LST was useful for understanding the underlying mechanisms for the formability limit when DSA and negative strain rate sensitivity operate. The goal was to understand the relationship between PLC/DSA phenomena and the formability limit physically manifested as shear band formation. Two principally different alloys were used to discover alloying effects.
Resumo:
Direct numerical simulation (DNS) results of autoignition in anon-premixed medium under an isotropic, homogeneous, and decaying turbulence are presented. The initial mixture consists of segregated fuel parcels randomly distributed within warm air, and the entire medium is subjected to a three-dimensional turbulence. Chemical kinetics is modeled by a four-step reduced reaction mechanism for autoignition of n-heptane/air mixture. Thus, this work overcomes the principal limitations of a previous contribution of the authors on two-dimensional DNS of autoignition with a one-step reaction model. Specific attention is focused on the differences in the effects of two- and three-dimensional turbulence on autoignition characteristics. The three-dimensional results show that ignition spots are most likely to originate at locations jointly corresponding to the most reactive mixture fraction and low scalar dissipation rate. Further, these ignition spots are found to originate at locations corresponding to the core of local vortical structures, and after ignition, the burning gases move toward the vortex periphery Such a movement is explained as caused by the cyclostrophic imbalance developed when the local gas density is variable. These results lead to the conclusion that the local ignition-zone structure does not conform to the classical stretched flamelet description. Parametric studies show that the ignition delay time decreases with an increase in turbulence intensity. Hence, these three-dimensional simulation results resolve the discrepancy between trends in experimental data and predictions from DNSs of two-dimensional turbulence. This qualitative difference between DNS results from three- and two-dimensional simulations is discussed and attributed to the effect of vortex stretching that is present in the former, but not in the latter.
Resumo:
Layered organic inorganic hybrids based on perovskite-derived alkylammonium lead halides have been demonstrated as important new materials in the construction of molecular electronic devices. Typical of this class of materials are the single-perovskite slab lead iodides of the general formula (CnH2n+1NH3)(2)PbI4. While for small n, these compounds are amenable to single-crystal structure determination, the increasing degree of disorder in the long chain (n = 12,14...) compounds makes such an analysis difficult. In this study, we use powder X-ray diffraction, and vibrational and C-13 NMR spectroscopies to establish the conformation, orientation and organization of hydrocarbon chains in the series of layered alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4 (n = 12,16,18). We find that the alkyl chains adopt a tilted bilayer arrangement, while the structure of the inorganic layer remains invariant with respect to the value of n. Conformation-sensitive methylene stretching modes in the infrared and Raman spectra, as well as the C-13 NMR spectra indicate that bonds in the methylene chain are in trans configuration. The skeletal modes of the alkyl chain in the Raman spectra establish that there is a high degree of all-trans conformational registry for the values of n studied here. From the orientation dependence of the infrared spectra of crystals of (CnH2n+1NH3)(2)PbI4 ( n = 12,16), we find that the molecular axis of the all-trans alkyl chains are tilted away from the interlayer normal by an angle of 55degrees. This value of this tilt angle is consistent with the dependence of the c lattice expansion as a function of n, as determined from powder X-ray diffraction.
Resumo:
p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.
Resumo:
Resonance Raman (RR) spectra are presented for p-nitroazobenzene dissolved in chloroform using 18 excitation Wavelengths, covering the region of (1)(n --> pi*) electronic transition. Raman intensities are observed for various totally symmetric fundamentals, namely, C-C, C-N, N=N, and N-O stretching vibrations, indicating that upon photoexcitation the excited-state evolution occurs along all of these vibrational coordinates. For a few fundamentals, interestingly, in p-nitroazobenzene, it is observed that the RR intensities decrease near the maxima of the resonant electronic (1)(n --> pi*) transition. This is attributed to the interference from preresonant scattering due to the strongly allowed (1)(pi --> pi*) electronic transition. The electronic absorption spectrum and the absolute Raman cross section for the nine Franck-Condon active fundamentals of p-nitroazobenzene have been successfully modeled using Heller's time-dependent formalism for Raman scattering. This employs harmonic description of the lowest energy (1)(n --> pi*) potential energy surface. The short-time isomerization dynamics is then examined from a priori knowledge of the ground-state normal mode descriptions of p-nitroazobenzene to convert the wave packet motion in dimensionless normal coordinates to internal coordinates. It is observed that within 20 fs after photoexcitation in p-nitroazobenzene, the N=N and C-N stretching vibrations undergo significant changes and the unsubstituted phenyl ring and the nitro stretching vibrations are also distorted considerably.
Resumo:
Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO3 (Ln=La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoO3 and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition.
Resumo:
Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO(3) (Ln = La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoo(3) and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.
Resumo:
We analyze the dynamics of desorption of a polymer molecule which is pulled at one of its ends with force f, trying to desorb it. We assume a monomer to desorb when the pulling force on it exceeds a critical value f(c). We formulate an equation for the average position of the n-th monomer, which takes into account excluded-volume interaction through the blob-picture of a polymer under external constraints. The approach leads to a diffusion equation with a p-Laplacian for the propagation of the stretching along the chain. This has to be solved subject to a moving boundary condition. Interestingly, within this approach, the problem can be solved exactly in the trumpet, stem-flower and stem regimes. In the trumpet regime, we get tau = tau(0)n(d)(2), where n(d) is the number of monomers that have desorbed at the time tau. tau(0) is known only numerically, but for f close to f(c), it is found to be tau(0) similar to f(c)/(f(2/3) - f(c)(2/3)) If one used simple Rouse dynamics, this result would change to tau similar to f(c)n(d)(2)/(f - f(c)). In the other regimes too, one can find exact solution, and interestingly, in all regimes tau similar to n(d)(2). Copyright (C) EPLA, 2011
Resumo:
Field emission from carbon nanotubes (CNTs) in the form of arrays or thin films give rise to several strongly correlated process of electromechanical interaction and degradation. Such processes are mainly due to (1) electron-phonon interaction (2) electromechanical force field leading to stretching of CNTs (3) ballistic transport induced thermal spikes, coupled with high dynamic stress, leading to degradation of emission performance at the device scale. Fairly detailed physics based models of CNTs considering the aspects (1) and (2) above have already been developed by these authors, and numerical results indicate good agreement with experimental results. What is missing in such a system level modeling approach is the incorporation of structural defects and vacancies or charge impurities. This is a practical and important problem due to the fact that degradation of field emission performance is indeed observed in experimental I-V curves. What is not clear from these experiments is whether such degradation in the I-V response is due to dynamic reorientation of the CNTs or due to the defects or due to both of these effects combined. Non-equilibrium Green’s function based simulations using a tight-binding Hamiltonian for single CNT segment show up the localization of carrier density at various locations of the CNTs. About 11% decrease in the drive current with steady difference in the drain current in the range of 0.2-0.4V of the gate voltage was reported in literature when negative charge impurity was introduced at various locations of the CNT over a length of ~20nm. In the context of field emission from CNT tips, a simplistic estimate of defects have been introduced by a correction factor in the Fowler-Nordheim formulae. However, a more detailed physics based treatment is required, while at the same time the device-scale simulation is necessary. The novelty of our present approach is the following. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects, and subsequently, we incorporate the vacancy defects and charge impurity effects in the Green’s function based approach. Field emission induced current-voltage characteristics of a vertically aligned CNT array on a Cu-Cr substrate is then simulated using a detailed nonlinear mechanistic model of CNTs coupled with quantum hydrodynamics. An array of 10 vertically aligned and each 12 m long CNTs is considered for the device scale analysis. Defect regions are introduced randomly over the CNT length. The result shows the decrease in the longitudinal strain due to defects. Contrary to the expected influence of purely mechanical degradation, this result indicates that the charge impurity and hence weaker transport can lead to a different electromechanical force field, which ultimately can reduce the strain. However, there could be significant fluctuation in such strain field due to electron-phonon coupling. The effect of such fluctuations (with defects) is clearly evident in the field emission current history. The average current also decreases significantly due to such defects.
Resumo:
The direct infrared (IR) absorption spectrum of benzene dimer formed in a free-jet expansion was recorded in the 3.3 mu m region for the first time. This has led to the observation of the C H stretching fundamental mode nu(13) (B(1u)), which is both IR and Raman forbidden in the monomer. Moreover, the IR forbidden and Raman allowed nu(7) (E(2g)) mode has been observed as well. These two modes were found to be red-shifted along with the IR allowed nu(20) (E(1u)) mode, as previously reported by Erlekam et al. [Erlekam; Frankowski; Meijer; Gert von Helden J. Chem. Phys. 2006, 124, 171101], using ion-dip spectroscopy, contrary to the blue-shift predicted earlier by theoretical studies. The observation of the nu(13) band indicates that the symmetry is reduced in the dimer, confirming the T-shaped structure observed by Erlekam et al. Our experimental results have not provided any direct evidence for the presence of the parallel displaced geometry, the main objective of the present work, as predicted by theoretical calculations.
Resumo:
Shear deformation and higher order theories of plates in bending are (generally) based on plate element equilibrium equations derived either through variational principles or other methods. They involve coupling of flexure with torsion (torsion-type) problem and if applied vertical load is along one face of the plate, coupling even with extension problem. These coupled problems with reference to vertical deflection of plate in flexure result in artificial deflection due to torsion and increased deflection of faces of the plate due to extension. Coupling in the former case is eliminated earlier using an iterative method for analysis of thick plates in bending. The method is extended here for the analysis of associated stretching problem in flexure.