93 resultados para covariance estimator
Resumo:
We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.
Resumo:
A new representation of spatio-temporal random processes is proposed in this work. In practical applications, such processes are used to model velocity fields, temperature distributions, response of vibrating systems, to name a few. Finding an efficient representation for any random process leads to encapsulation of information which makes it more convenient for a practical implementations, for instance, in a computational mechanics problem. For a single-parameter process such as spatial or temporal process, the eigenvalue decomposition of the covariance matrix leads to the well-known Karhunen-Loeve (KL) decomposition. However, for multiparameter processes such as a spatio-temporal process, the covariance function itself can be defined in multiple ways. Here the process is assumed to be measured at a finite set of spatial locations and a finite number of time instants. Then the spatial covariance matrix at different time instants are considered to define the covariance of the process. This set of square, symmetric, positive semi-definite matrices is then represented as a third-order tensor. A suitable decomposition of this tensor can identify the dominant components of the process, and these components are then used to define a closed-form representation of the process. The procedure is analogous to the KL decomposition for a single-parameter process, however, the decompositions and interpretations vary significantly. The tensor decompositions are successfully applied on (i) a heat conduction problem, (ii) a vibration problem, and (iii) a covariance function taken from the literature that was fitted to model a measured wind velocity data. It is observed that the proposed representation provides an efficient approximation to some processes. Furthermore, a comparison with KL decomposition showed that the proposed method is computationally cheaper than the KL, both in terms of computer memory and execution time.
Resumo:
This paper proposes a novel experimental test procedure to estimate the reliability of structural dynamical systems under excitations specified via random process models. The samples of random excitations to be used in the test are modified by the addition of an artificial control force. An unbiased estimator for the reliability is derived based on measured ensemble of responses under these modified inputs based on the tenets of Girsanov transformation. The control force is selected so as to reduce the sampling variance of the estimator. The study observes that an acceptable choice for the control force can be made solely based on experimental techniques and the estimator for the reliability can be deduced without taking recourse to mathematical model for the structure under study. This permits the proposed procedure to be applied in the experimental study of time-variant reliability of complex structural systems that are difficult to model mathematically. Illustrative example consists of a multi-axes shake table study on bending-torsion coupled, geometrically non-linear, five-storey frame under uni/bi-axial, non-stationary, random base excitation. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar, Dukkipati, & Bhatnagar, 2014), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on SF algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.
Resumo:
The goal of this work is to reduce the cost of computing the coefficients in the Karhunen-Loeve (KL) expansion. The KL expansion serves as a useful and efficient tool for discretizing second-order stochastic processes with known covariance function. Its applications in engineering mechanics include discretizing random field models for elastic moduli, fluid properties, and structural response. The main computational cost of finding the coefficients of this expansion arises from numerically solving an integral eigenvalue problem with the covariance function as the integration kernel. Mathematically this is a homogeneous Fredholm equation of second type. One widely used method for solving this integral eigenvalue problem is to use finite element (FE) bases for discretizing the eigenfunctions, followed by a Galerkin projection. This method is computationally expensive. In the current work it is first shown that the shape of the physical domain in a random field does not affect the realizations of the field estimated using KL expansion, although the individual KL terms are affected. Based on this domain independence property, a numerical integration based scheme accompanied by a modification of the domain, is proposed. In addition to presenting mathematical arguments to establish the domain independence, numerical studies are also conducted to demonstrate and test the proposed method. Numerically it is demonstrated that compared to the Galerkin method the computational speed gain in the proposed method is of three to four orders of magnitude for a two dimensional example, and of one to two orders of magnitude for a three dimensional example, while retaining the same level of accuracy. It is also shown that for separable covariance kernels a further cost reduction of three to four orders of magnitude can be achieved. Both normal and lognormal fields are considered in the numerical studies. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the problem of intercepting highly maneuverable threats using seeker-less interceptors that operate in the command guidance mode. These systems are more prone to estimation errors than standard seeker-based systems. In this paper, an integrated estimation/guidance (IEG) algorithm, which combines interactive multiple model (IMM) estimator with differential game guidance law (DGL), is proposed for seeker-less interception. In this interception scenario, the target performs an evasive bang-bang maneuver, while the sensor has noisy measurements and the interceptor is subject to acceleration bound. The IMM serves as a basis for the synthesis of efficient filters for tracking maneuvering targets and reducing estimation errors. The proposed game-based guidance law for two-dimensional interception, later extended to three-dimensional interception scenarios, is used to improve the endgame performance of the command-guided seeker-less interceptor. The IMM scheme and an optimal selection of filters, to cater to various maneuvers that are expected during the endgame, are also described. Furthermore, a chatter removal algorithm is introduced, thus modifying the differential game guidance law (modified DGL). A comparison between modified DGL guidance law and conventional proportional navigation guidance law demonstrates significant improvement in miss distance in a pursuer-evader scenario. Simulation results are also presented for varying flight path angle errors. A numerical study is provided which demonstrates the performance of the combined interactive multiple model with game-based guidance law (IMM/DGL). Simulation study is also carried out for combined IMM and modified DGL (IMM/modified DGL) which exhibits the superior performance and viability of the algorithm reducing the chattering phenomenon. The results are illustrated by an extensive Monte Carlo simulation study in the presence of estimation errors.
Resumo:
In this paper, we consider decode-and-forward (DF) relay beamforming for secrecy with cooperative jamming (CJ) in the presence of multiple eavesdroppers. The communication between a source-destination pair is aided by a multiple-input multiple-output (MIMO) relay. The source has one transmit antenna and the destination and eavesdroppers have one receive antenna each. The source and the MIMO relay are constrained with powers P-S and P-R, respectively. We relax the rank-1 constraint on the signal beamforming matrix and transform the secrecy rate max-min optimization problem to a single maximization problem, which is solved by semidefinite programming techniques. We obtain the optimum source power, signal relay weights, and jamming covariance matrix. We show that the solution of the rank-relaxed optimization problem has rank-1. Numerical results show that CJ can improve the secrecy rate.
Resumo:
In this paper, we consider decode-and-forward (DF) relay beamforming for secrecy with cooperative jamming (CJ) in the presence of multiple eavesdroppers. The communication between a source-destination pair is aided by a multiple-input multiple-output (MIMO) relay. The source has one transmit antenna and the destination and eavesdroppers have one receive antenna each. The source and the MIMO relay are constrained with powers P-S and P-R, respectively. We relax the rank-1 constraint on the signal beamforming matrix and transform the secrecy rate max-min optimization problem to a single maximization problem, which is solved by semidefinite programming techniques. We obtain the optimum source power, signal relay weights, and jamming covariance matrix. We show that the solution of the rank-relaxed optimization problem has rank-1. Numerical results show that CJ can improve the secrecy rate.
Resumo:
We revisit the a posteriori error analysis of discontinuous Galerkin methods for the obstacle problem derived in 25]. Under a mild assumption on the trace of obstacle, we derive a reliable a posteriori error estimator which does not involve min/max functions. A key in this approach is an auxiliary problem with discrete obstacle. Applications to various discontinuous Galerkin finite element methods are presented. Numerical experiments show that the new estimator obtained in this article performs better.
Resumo:
Objective Asymmetry in brain structure and function is implicated in the pathogenesis of psychiatric disorders. Although right hemisphere abnormality has been documented in obsessive-compulsive disorder (OCD), cerebral asymmetry is rarely examined. Therefore, in this study, we examined anomalous cerebral asymmetry in OCD patients using the line bisection task. Methods A total of 30 patients with OCD and 30 matched healthy controls were examined using a reliable and valid two-hand line bisection (LBS) task. The comparative profiles of LBS scores were analysed using analysis of covariance. Results Patients with OCD bisected significantly less number of lines to the left and had significant rightward deviation than controls, indicating right hemisphere dysfunction. The correlations observed in this study suggest that those with impaired laterality had more severe illness at baseline. Conclusions The findings of this study indicate abnormal cerebral lateralisation and right hemisphere dysfunction in OCD patients.
Resumo:
We establish zero-crossing rate (ZCR) relations between the input and the subbands of a maximally decimated M-channel power complementary analysis filterbank when the input is a stationary Gaussian process. The ZCR at lag is defined as the number of sign changes between the samples of a sequence and its 1-sample shifted version, normalized by the sequence length. We derive the relationship between the ZCR of the Gaussian process at lags that are integer multiples of Al and the subband ZCRs. Based on this result, we propose a robust iterative autocorrelation estimator for a signal consisting of a sum of sinusoids of fixed amplitudes and uniformly distributed random phases. Simulation results show that the performance of the proposed estimator is better than the sample autocorrelation over the SNR range of -6 to 15 dB. Validation on a segment of a trumpet signal showed similar performance gains.
Resumo:
A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of DG methods is comparable with the error estimator of the conforming methods. Numerical experiments illustrate the performance of the error estimator. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
Resumo:
In this paper, we consider the problem of power allocation in MIMO wiretap channel for secrecy in the presence of multiple eavesdroppers. Perfect knowledge of the destination channel state information (CSI) and only the statistical knowledge of the eavesdroppers CSI are assumed. We first consider the MIMO wiretap channel with Gaussian input. Using Jensen's inequality, we transform the secrecy rate max-min optimization problem to a single maximization problem. We use generalized singular value decomposition and transform the problem to a concave maximization problem which maximizes the sum secrecy rate of scalar wiretap channels subject to linear constraints on the transmit covariance matrix. We then consider the MIMO wiretap channel with finite-alphabet input. We show that the transmit covariance matrix obtained for the case of Gaussian input, when used in the MIMO wiretap channel with finite-alphabet input, can lead to zero secrecy rate at high transmit powers. We then propose a power allocation scheme with an additional power constraint which alleviates this secrecy rate loss problem, and gives non-zero secrecy rates at high transmit powers.