81 resultados para computational fluid dynamics (CFD)
Resumo:
The multiphase flow of fluids in the unsaturated porous medium is considered as a three phase flow of water, NAPL, and air simultaneously in the porous medium. The adaptive solution fully implicit modified sequential method is used for the numerical modelling. The effect of capillarity and heterogeneity effect at the interface between the media is studied and it is observed that the interface criteria has to be taken into account for the correct prediction of NAPL migration especially in heterogeneous media. The modified Newton Raphson method is used for the linearization and Hestines and Steifel Conjugate Gradient method is used as the solver.
Resumo:
We undertake a systematic, direct numerical simulation of the twodimensional, Fourier-truncated, Gross-Pitaevskii equation to study the turbulent evolutions of its solutions for a variety of initial conditions and a wide range of parameters. We find that the time evolution of this system can be classified into four regimes with qualitatively different statistical properties. Firstly, there are transients that depend on the initial conditions. In the second regime, powerlaw scaling regions, in the energy and the occupation-number spectra, appear and start to develop; the exponents of these power laws and the extents of the scaling regions change with time and depend on the initial condition. In the third regime, the spectra drop rapidly for modes with wave numbers k > kc and partial thermalization takes place for modes with k < kc; the self-truncation wave number kc(t) depends on the initial conditions and it grows either as a power of t or as log t. Finally, in the fourth regime, complete thermalization is achieved and, if we account for finite-size effects carefully, correlation functions and spectra are consistent with their nontrivial Berezinskii-Kosterlitz-Thouless forms. Our work is a natural generalization of recent studies of thermalization in the Euler and other hydrodynamical equations; it combines ideas from fluid dynamics and turbulence, on the one hand, and equilibrium and nonequilibrium statistical mechanics on the other.
Resumo:
The transonic flutter dip of an aeroelastic system is primarily caused by compressibility of the flowing fluid. Viscous effects are not dominant in the pre-transonic dip region. In fact, an Euler solver can predict this flutter boundary with considerable accuracy. However with an increase in Mach number the shock moves towards the trailing edge causing shock induced separation. This shock-boundary layer interaction changes the flutter boundary in the transonic and post-transonic dip region significantly. We discuss the effect of viscosity in changing the flutter boundary in the post-transonic dip region using a RANS solver coupled to a two-degree of freedom model of the structural dynamics of a wing.
Resumo:
We have developed a one-way nested Indian Ocean regional model. The model combines the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM4p1) at global climate model resolution (nominally one degree), and a regional Indian Ocean MOM4p1 configuration with 25 km horizontal resolution and 1 m vertical resolution near the surface. Inter-annual global simulations with Coordinated Ocean-Ice Reference Experiments (CORE-II) surface forcing over years 1992-2005 provide surface boundary conditions. We show that relative to the global simulation, (i) biases in upper ocean temperature, salinity and mixed layer depth are reduced, (ii) sea surface height and upper ocean circulation are closer to observations, and (iii) improvements in model simulation can be attributed to refined resolution, more realistic topography and inclusion of seasonal river runoff. Notably, the surface salinity bias is reduced to less than 0.1 psu over the Bay of Bengal using relatively weak restoring to observations, and the model simulates the strong, shallow halocline often observed in the North Bay of Bengal. There is marked improvement in subsurface salinity and temperature, as well as mixed layer depth in the Bay of Bengal. Major seasonal signatures in observed sea surface height anomaly in the tropical Indian Ocean, including the coastal waveguide around the Indian peninsula, are simulated with great fidelity. The use of realistic topography and seasonal river runoff brings the three dimensional structure of the East India Coastal Current and West India Coastal Current much closer to observations. As a result, the incursion of low salinity Bay of Bengal water into the southeastern Arabian Sea is more realistic. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number E (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number Lambda) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at Lambda similar to 1, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at Lambda similar to 1, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.