349 resultados para complex sequences
Resumo:
Silk gland cells ofBombyx mori undergo chromosomal endoduplication throughout larval development. The DNA content of both posterior and middle silk gland nuclei increased by 300000 times the haploid genomic content, amounting to 18 rounds of replication. The DNA doubling time is approximately 48 h and 24 h during the fourth and fifth instars of larval development. However, DNA content does not change during the interim moult. Concomitant with DNA content, DNA polymerase activity also increases as development progressed. Enzyme activity is predominantly due to DNA polymerase with no detectable level of polymerase . DNA polymerase from silk gland extracts was purified to homogeneity (using a series of columns involving ionexchange, gel-filtration and affintiy chromatography), resulting in a 4000-fold increase in specific activity. The enzyme is a heterogeneous multimer of high molecular mass, and the catalytic (polymerase) activity is resident in the 180-kDa subunit. The enzyme shows a PI of 6.2 and theKm values for the dNTP vary over 5-16 . The polymerase is tightly associated with primase activity and initiates primer synthesis in the presence of ribonucleoside triphosphates on a single-stranded DNA template. The primase activity is resident in the 45-kDa subunit. The enzyme is devoid of any detectable exonuclease activity. The abundance of DNA polymerase α in silk glands and its strong association with the nuclear matrix suggest a role in the DNA endoduplication process.
Resumo:
Proximity of molecules is a crucial factor in many solid- state photochemical processes.'S2 The biomolecular photodimerization reactions in the solid state depend on the relative geometry of reactant molecules in the crystal lattice with center-to-center distance of nearest neighbor double bonds of the order of ca. 4 A. This fact emanates from the incisive studies of Schmidt and Cohen.2 One of the two approaches to achieve this distance requirement is the so-called "Crystal-Engineering" of structures, which essentially involves the introduction of certain functional groups that display in-plane interstacking interactions (Cl...Cl, C-He-0, etc.) in the crystal The chloro group is by far the most successful in promoting the /3- packing m ~ d e ,th~o,u~gh recent studies have shown its limitations? Another approach involves the use of constrained media in which the reactants could hopefully be aligned.
Resumo:
Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots.
Resumo:
Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (DeltaCp), enthalpy (DeltaH) and entropy (DeltaS) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (DeltaCp) and enthalpy (DeltaH) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.
Resumo:
An unusual copper(II) complex [Cu(L-1a)(2)Cl-2] CH3OH center dot H2O center dot H3O+Cl- (1a) was isolated from a solution of a novel tricopper(II) complex [Cu-3(HL1)Cl-2]Cl-3 center dot 2H(2)O (1) in methanol. where L-1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex la was followed by time-dependant monitoring of the UV-visible spectra. which reveals degradation of ligand backbone as intensity loss of bands corresponding to O -> Cu(II) charge transfer.
Resumo:
The current explosion of DNA sequence information has generated increasing evidence for the claim that noncoding repetitive DNA sequences present within and around different genes could play an important role in genetic control processes, although the precise role and mechanism by which these sequences function are poorly understood. Several of the simple repetitive sequences which occur in a large number of loci throughout the human and other eukaryotic genomes satisfy the sequence criteria for forming non-B DNA structures in vitro. We have summarized some of the features of three different types of simple repeats that highlight the importance of repetitive DNA in the control of gene expression and chromatin organization. (i) (TG/CA)n repeats are widespread and conserved in many loci. These sequences are associated with nucleosomes of varying linker length and may play a role in chromatin organization. These Z-potential sequences can help absorb superhelical stress during transcription and aid in recombination. (ii) Human telomeric repeat (TTAGGG)n adopts a novel quadruplex structure and exhibits unusual chromatin organization. This unusual structural motif could explain chromosome pairing and stability. (iii) Intragenic amplification of (CTG)n/(CAG)n trinucleotide repeat, which is now known to be associated with several genetic disorders, could down-regulate gene expression in vivo. The overall implications of these findings vis-à-vis repetitive sequences in the genome are summarized.
Resumo:
In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10(-7). In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function.
Resumo:
For the first time, we find the complex solitons for a quasi-one-dimensional Bose-Einstein condensate with two-and three-body interactions. These localized solutions are characterized by a power law behaviour. Both dark and right solitons can be excited in the experimentally allowed parameter domain, when two-and three-body interactions are,respectively, repulsive and attractive. The dark solitons travel with a constant speed, which is quite different from the Lieb mode, where profiles with different speeds, bounded above by sound velocity, can exist for specified interaction strengths. We also study the properties of these solitons in the presence of harmonic confinement with time-dependent nonlinearity and loss. The modulational instability and the Vakhitov-Kolokolov criterion of stability are also studied.
Resumo:
The incorporation of DNA into nucleosomes and higher-order forms of chromatin in vivo creates difficulties with respect to its accessibility for cellular functions such as transcription, replication, repair and recombination. To understand the role of chromatin structure in the process of homologous recombination, we have studied the interaction of nucleoprotein filaments, comprised of RecA protein and ssDNA, with minichromosomes. Using this paradigm, we have addressed how chromatin structure affects the search for homologous DNA sequences, and attempted to distinguish between two mutually exclusive models of DNA-DNA pairing mechanisms. Paradoxically, we found that the search for homologous sequences, as monitored by unwinding of homologous or heterologous duplex DNA, was facilitated by nucleosomes, with no discernible effect on homologous pairing. More importantly, unwinding of minichromosomes required the interaction of nucleoprotein filaments and led to the accumulation of circular duplex DNA sensitive to nuclease P1. Competition experiments indicated that chromatin templates and naked DNA served as equally efficient targets for homologous pairing. These and other findings suggest that nucleosomes do not impede but rather facilitate the search for homologous sequences and establish, in accordance with one proposed model, that unwinding of duplex DNA precedes alignment of homologous sequences at the level of chromatin. The potential application of this model to investigate the role of chromosomal proteins in the alignment of homologous sequences in the context of cellular recombination is considered.
Resumo:
In the presence of ATP, recA protein forms a presynaptic complex with single-stranded DNA that is an obligatory intermediate in homologous pairing. Presynaptic complexes of recA protein and circular single strands that are active in forming joint molecules can be isolated by gel filtration. These isolated active complexes are nucleoprotein filaments with the following characteristics: (i) a contour length that is at least 1.5 times that of the corresponding duplex DNA molecule, (ii) an ordered structure visualized by negative staining as a striated filament with a repeat distance of 9.0 nm and a width of 9.3 nm, (iii) approximately 8 molecules of recA protein and 20 nucleotide residues per striation. The widened spacing between bases in the nucleoprotein filament means that the initial matching of complementary sequences must involve intertwining of the filament and duplex DNA, unwinding of the latter, or some combination of both to equalize the spacing between nascent base pairs. These experiments support the concept that recA protein first forms a filament with single-stranded DNA, which in turn binds to duplex DNA to mediate both homologous pairing and subsequent strand exchange.
Resumo:
Sequence motifs occurring in a particular order in proteins or DNA have been proved to be of biological interest. In this paper, a new method to locate the occurrences of up to five user-defined motifs in a specified order in large proteins and in nucleotide sequence databases is proposed. It has been designed using the concept of quantifiers in regular expressions and linked lists for data storage. The application of this method includes the extraction of relevant consensus regions from biological sequences. This might be useful in clustering of protein families as well as to study the correlation between positions of motifs and their functional sites in DNA sequences.
Resumo:
Oxovanadium(IV) complexes [VOCl(B)(2)]Cl (1-3) of phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3), have been prepared, characterized and their DNA and protein binding, photo-induced DNA and protein cleavage activity andm photocytotoxicity have been studied. Complex 2, structurally characterized by X-ray crystallography, shows the presence of a vanadyl group in VOClN4 coordination geometry. The dpq ligand displays a chelating mode of binding with a N-donor site trans to the oxo-group. The chloride ligand is cis to the oxo-group. The one-electron paramagnetic complexes show a d-d band near 715 nm in 15% DMF-Tris-HCl buffer. The complexes are redox active exhibiting a V(IV)/V(III) redox couple within -0.5 to -0.7 V vs. SCE in 20% DMF-Tris-HCl/0.1 M KCl. The complexes bind to calf thymus (CT) DNA in the order: 3 (dppz) > 2 (dpq) > 1 (phen). The binding data reveal the groove and/or partial intercalative DNA binding nature of the complexes. The complexes show chemical nuclease'' activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide via a hydroxyl radical pathway. The dpq and dppz complexes are efficient photocleavers of DNA in UV-A light of 365 nm forming reactive singlet oxygen (O-1(2)) and hydroxyl radical ((OH)-O-center dot) species. Complexes 2 and 3 also show DNA cleavage activity in red light (> 750 nm) by an exclusive (OH)-O-center dot pathway. The complexes display a binding propensity to bovine serum albumin (BSA) protein giving K-BSA values in the range of 7.1 x 10(4)-1.8 x 10(5) M-1. The dppz complex 3 shows BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via (OH)-O-center dot pathway. The dppz complex 3 exhibits significant PDT effect in human cervical cancer HeLa cells giving IC50 values of 1.0 mu M and 12.0 mu M in UV-A and visible light, respectively (IC50 = > 100 mu M in the dark).
Resumo:
We present a signal processing approach using discrete wavelet transform (DWT) for the generation of complex synthetic aperture radar (SAR) images at an arbitrary number of dyadic scales of resolution. The method is computationally efficient and is free from significant system-imposed limitations present in traditional subaperture-based multiresolution image formation. Problems due to aliasing associated with biorthogonal decomposition of the complex signals are addressed. The lifting scheme of DWT is adapted to handle complex signal approximations and employed to further enhance the computational efficiency. Multiresolution SAR images formed by the proposed method are presented.
Resumo:
Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C-12 hydrogen bonded turns which may be considered as backbone expanded analogues of C-10 beta-turns) found in alpha alpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alpha gamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C-gamma-C-beta (theta(1)) and C-beta-C-alpha (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment. Peptide 1 forms a continuous helix over the Aib(2)-Aib(6) segment, while the peptide 2 forms beta-hairpin structure stabilized by four cross-strand hydrogen bonds with the Aib-Gpn segment forming a nonhelical C-12 turn. The robustness of the helix in peptide 1 in solution is demonstrated by NMR methods. Peptide 2 is conformationally fragile in solution with evidence of beta-hairpin conformations being obtained in methanol. Theoretical calculations permit delineation of the various C-12 hydrogen bonded structures which are energetically feasible in alpha gamma and gamma alpha sequences.
Resumo:
Let X be an arbitrary complex surface and D a domain in X that has a non-compact group of holomorphic automorphisms. A characterization of those domains D that admit a smooth, weakly pseudoconvex, finite type boundary orbit accumulation point is obtained.