82 resultados para catch limit policy
Resumo:
We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.
Resumo:
We consider a setting in which a single item of content is disseminated in a population of mobile nodes by opportunistic copying when pairs of nodes come in radio contact. The nodes in the population may either be interested in receiving the content (referred to as destinations) or not yet interested in receiving the content (referred to as relays). We consider a model for the evolution of popularity, the process by which relays get converted into destinations. A key contribution of our work is to model and study the joint evolution of content popularity and its spread in the population. Copying the content to relay nodes is beneficial since they can help spread the content to destinations, and could themselves be converted into destinations. We derive a fluid limit for the joint evolution model and obtain optimal policies for copying to relay nodes in order to deliver content to a desired fraction of destinations, while limiting the fraction of relay nodes that get the content but never turn into destinations. We prove that a time-threshold policy is optimal for controlling the copying to relays, i.e., there is an optimal time-threshold up to which all opportunities for copying to relays are exploited, and after which relays are not copied to. We then utilize simulations and numerical evaluations to provide insights into the effects of various system parameters on the optimally controlled co-evolution model.
Resumo:
The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a lower bound limit analysis approach for solving an axisymmetric stability problem by using the Drucker-Prager (D-P) yield cone in conjunction with finite elements and nonlinear optimization. In principal stress space, the tip of the yield cone has been smoothened by applying the hyperbolic approximation. The nonlinear optimization has been performed by employing an interior point method based on the logarithmic barrier function. A new proposal has also been given to simulate the D-P yield cone with the Mohr-Coulomb hexagonal yield pyramid. For the sake of illustration, bearing capacity factors N-c, N-q and N-gamma have been computed, as a function of phi, both for smooth and rough circular foundations. The results obtained from the analysis compare quite well with the solutions reported from literature.
Resumo:
Bearing capacity factors, N-c, N-q, and N-gamma, for a conical footing are determined by using the lower and upper bound axisymmetric formulation of the limit analysis in combination with finite elements and optimization. These factors are obtained in a bound form for a wide range of the values of cone apex angle (beta) and phi with delta = 0, 0.5 phi, and phi. The bearing capacity factors for a perfectly rough (delta = phi) conical footing generally increase with a decrease in beta. On the contrary, for delta = 0 degrees, the factors N-c and N-q reduce gradually with a decrease in beta. For delta = 0 degrees, the factor N-gamma for phi >= 35 degrees becomes a minimum for beta approximate to 90 degrees. For delta = 0 degrees, N-gamma for phi <= 30 degrees, as in the case of delta = phi, generally reduces with an increase in beta. The failure and nodal velocity patterns are also examined. The results compare well with different numerical solutions and centrifuge tests' data available from the literature.
Resumo:
A new method for the separation of contact resistance (R-contact) into Schottky barrier resistance (R-SB) and interlayer resistance (R-IL) is proposed for multilayered MoS2 FETs. While R-SB varies exponentially with Schottky barrier height (Phi(bn)), R-IL essentially remains unchanged. An empirical model utilizing this dependence of R-contact versus Phi(bn) is proposed and fits to the experimental data. The results, on comparison with the existing reports of lowest R-contact, suggest that the extracted R-IL (1.53 k Omega.mu m) for an unaltered channel would determine the lower limit of intrinsic R-contact even for barrierless contacts for multilayered exfoliated MoS2 FETs.
Resumo:
A discussion has been provided for the comments raised by the discusser (Clausen, 2015)1] on the article recently published by the authors (Chakraborty and Kumar, 2015). The effect of exponent alpha for values of GSI approximately smaller than 30 becomes more critical. On the other hand, for greater values of GSI, the results obtained by the authors earlier remain primarily independent of alpha and can be easily used. (C) 2015 Elsevier Ltd. All rights reserved.