497 resultados para carbon nanofibre
Resumo:
Supercritical processes are gaining importance in the last few years in the food, environmental and pharmaceutical product processing. The design of any supercritical process needs accurate experimental data on solubilities of solids in the supercritical fluids (SCFs). The empirical equations are quite successful in correlating the solubilities of solid compounds in SCF both in the presence and absence of cosolvents. In this work, existing solvate complex models are discussed and a new set of empirical equations is proposed. These equations correlate the solubilities of solids in supercritical carbon dioxide (both in the presence and absence of cosolvents) as a function of temperature, density of supercritical carbon dioxide and the mole fraction of cosolvent. The accuracy of the proposed models was evaluated by correlating 15 binary and 18 ternary systems. The proposed models provided the best overall correlations. (C) 2009 Elsevier BA/. All rights reserved.
Resumo:
Enrichment of metallic single-walled carbon nanotubes (SWNTs) has been accomplished by several means, including new extraction and synthetic procedures and by interaction with metal nanoparticles as well as electron donor molecules. In the presence of Fe(CO)(5) the arc discharge method yields nearly pure metallic nanotubes. Fluorous chemistry involving the preferential diazotization of metallic SWNTs offers a good procedure of obtaining the pure metallic species. Interaction of gold or platinum nanoparticles as well as of electron-donor molecules such as aniline and tetrathiafulvalene (TTF) transform semiconducting SWNTs into metallic ones. Raman and electroni spectroscopies provide ideal means to monitor enrichment of metallic SWNTs.
Resumo:
We study the process of electronic excitation energy transfer from a fluorophore to the electronic energy levels of a single-walled carbon nanotube. The matrix element for the energy transfer involves the Coulombic interaction between the transition densities on the donor and the acceptor. In the Foumlrster approach, this is approximated as the interaction between the corresponding transition dipoles. For energy transfer from a dye to a nanotube, one can use the dipole approximation for the dye, but not for the nanotube. We have therefore calculated the rate using an approach that avoids the dipole approximation for the nanotube. We find that for the metallic nanotubes, the rate has an exponential dependence if the energy that is to be transferred, h is less than a threshold and a d(-5) dependence otherwise. The threshold is the minimum energy required for a transition other than the k(i,perpendicular to)=0 and l=0 transition. Our numerical evaluation of the rate of energy transfer from the dye pyrene to a (5,5) carbon nanotube, which is metallic leads to a distance of similar to 165 A degrees up to which energy transfer is appreciable. For the case of transfer to semiconducting carbon nanotubes, apart from the process of transfer to the electronic energy levels within the one electron picture, we also consider the possibility of energy transfer to the lowest possible excitonic state. Transfer to semiconducting carbon nanotubes is possible only if>=epsilon(g)-epsilon(b). The long range behavior of the rate of transfer has been found to have a d(-5) dependence if h >=epsilon(g). But, when the emission energy of the fluorophore is in the range epsilon(g)>h >=epsilon(g)-epsilon(b), the rate has an exponential dependence on the distance. For the case of transfer from pyrene to the semiconducting (6,4) carbon nanotube, energy transfer is found to be appreciable up to a distance of similar to 175 A degrees.
Resumo:
Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.
Resumo:
The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.
Resumo:
Synthetic approach to 3-alkoxythapsane, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. A combination of alkylation, orthoester Claisen rearrangement and intramolecular diazoketone cyclopropanation has been employed for the creation of the three requisite contiguous quaternary carbon atoms.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Carbon nanotubes (CNTs) were discovered by Iijima in 1991 as the fourth form of carbon. Carbon nanotubes are the ultimate form of the carbon fibre because of its high Young's modulus in the order of 1 TPa, which is very useful for load transfer in nanocomposites. In the present work, CNT/Cu nanocomposites were fabricated by the powder metallurgy technique, and after extrusion of the nanocomposites, bright field transmission electron microscopic studies were carried out. From the transmission electron microscopic images obtained, a novel method of ascertaining the Young's modulus of multiwalled CNTs is worked out in the present paper, which turns out to be 0.94 TPa, which is consistent with experimental results. Furthermore, an attempt is made to investigate the microhardness of copper by reinforcing it with multiwalled CNTs. There is an increase in hardness by twofold in CNT/Cu nanocomposites as compared to pure Cu matrix. This is due to high relative density, even distribution of CNTs and proper bonding at CNT/Cu interfaces.
Resumo:
Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.
Resumo:
The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.
Resumo:
Formation of C4 dicarboxylic acids in Plasmodium berghei by carbon dioxide fixation reaction has been demonstrated by the use of labeled NaH14CO3. The reactions require glucose, which may be required not only as an energy source but also to contribute to the formation of pyruvate in the process of carbon dioxide fixation. Intracellular concentration of pyruvate may play an important role in the metabolism of P. berghei; an increased intracellular level of pyruvate seems to be a prerequisite before some of these reactions could be detected. The distribution of the label indicates extensive randomization of amino acids and suggests an extensive cycling of the amino acid and organic acid pools of the parasites. This investigation formed part of the thesis submitted in 1965 for the doctoral degree at the Indian Institute of Science, Bangalore 12, India, and was supported in part by the Council of Scientific and Industrial Research, India.
Resumo:
Vapor-liquid equilibrium data for the systems diisopropyl ether-n-heptane and diisopropyl ether-carbon tetrachloride have been reported at pressures of 760, 1520, and 2280 mm. of Hg. The systems form ideal mixtures under the pressure range studied.
Resumo:
Carbon disulfide reacts with azide ion to form the 1,2,3,4-thiatriazolinethionate ion and not the acyclic azido dithiocarbonate ion as previously reported. A series of salts of thiatriazoline have been prepared and none shows evidence for the presence of the azido group. Esters of thiatriazolinethione prepared by the reaction of the sodium salt with alkyl or acyl halides have been found to be either 5-(substituted) mercapto-1,2,3,4-thiatriazoles or 4-substituted 1,2,3,4-thiatriazoline-5-thiones. These structures have been assigned on the basis of degradative and spectroscopic evidence. The chemistry of the so-called azidodithiocarbonates has been reinterpreted in terms of the thiatriazole structure.
Resumo:
We present a simplified yet analytical formulation of the carrier backscattering coefficient for zig-zag semiconducting single walled carbon nanotubes under diffusive regime. The electron-phonon scattering rate for longitudinal acoustic, optical, and zone-boundary phonon emissions for both inter- and intrasubband transition rates have been derived using Kane's nonparabolic energy subband model.The expressions for the mean free path and diffusive resistance have been formulated incorporating the aforementioned phonon scattering. Appropriate overlap function in Fermi's golden rule has been incorporated for a more general approach. The effect of energy subbands on low and high bias zones for the onset of longitudinal acoustic, optical, and zone-boundary phonon emissions and absorption have been analytically addressed. 90% transmission of the carriers from the source to the drain at 400 K for a 5 mu m long nanotube at 105 V m(-1) has been exhibited. The analytical results are in good agreement with the available experimental data. (c) 2010 American Institute of Physics.
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.