503 resultados para carbon fibres


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the photoemission from quantum wells (QWs) in ultrathin films (UFs) and quantum well wires (QWWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined Ill-V compounds form the special cases of our generalized analysis. The photoemission has also been studied for quantum confined II-VI, n-GaP, n-Ge, PtSb2, stressed materials and Bismuth on the basis of respective dispersion relations. It has been found taking quantum confined CdGeAS(2), InAs, InSb, CdS, GaP, Ge, PtSb2, stressed n-InSb and B1 that the photoemission exhibits quantized variations with the incident photon energy, changing electron concentration and film thickness, respectively, for all types of quantum confinement. The photoemission from CNs exhibits oscillatory dependence with increasing normalized electron degeneracy and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of photoemission from non-degenerate semiconductors and parabolic energy bands, leading to the compatibility test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the R-T measurement of carbon nanotube bundles from room temperature down to 1 K. The resistance at a particular temperature depends on the diameter of the bundle. The larger the bundle diameter is, the lower the value of the resistance. The resistance increases with the decrease in temperature as in the case of carbon, carbon glass resistance thermometer, and carbon nanotubes reported in the literature. The rate of the variation of resistance depends on the resistance of the bundle at room temperature which can be explored for the low temperature thermometry. Overall, the resistance and the sensitivity of the bundle depend on the bundle diameter which can be monitored easily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanofibers of 50–500 nm diameter and several micrometer length were synthesized by high-temperature pyrolysis of dihydro-2,5-furandione (C4H4O3) in the temperature range of 600–980 °C. The formation of both graphitic and non-graphitic structured carbon fibers was observed in high-resolution transmission electron microscope. The Raman spectra of the samples showed the presence of both the D and G bands of varying intensity and sharpness. The low-temperature electrical transport studies on the samples have shown interesting metal–insulator transitions. The films showed variable range hopping conduction in the insulating regime and power law behavior in the critical regime at low temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of [M(dppf)(H2O)2](OTf)2 (dppf =1,1′-bis(diphenylphosphino)ferrocene; M = Pd, Pt) with 1 equiv of disodium fumarate in methanol medium showed an unusual hydrogenation of the ethylenic bond followed by the formation of metallochelates linking M through one of the carboxylates and the β-carbon with respect to COO−. Despite the possibility of formation of a [2 + 2] or [4 + 4] self-assembled macrocycle, the reduction of fumarate to succinate, and in particular the linking through the β-carbon, is unique since a similar treatment using disodium succinate instead of disodium fumarate yielded an expected metallochelate where both the carboxylates were coordinated to the square-planar metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical processes are gaining importance in the last few years in the food, environmental and pharmaceutical product processing. The design of any supercritical process needs accurate experimental data on solubilities of solids in the supercritical fluids (SCFs). The empirical equations are quite successful in correlating the solubilities of solid compounds in SCF both in the presence and absence of cosolvents. In this work, existing solvate complex models are discussed and a new set of empirical equations is proposed. These equations correlate the solubilities of solids in supercritical carbon dioxide (both in the presence and absence of cosolvents) as a function of temperature, density of supercritical carbon dioxide and the mole fraction of cosolvent. The accuracy of the proposed models was evaluated by correlating 15 binary and 18 ternary systems. The proposed models provided the best overall correlations. (C) 2009 Elsevier BA/. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enrichment of metallic single-walled carbon nanotubes (SWNTs) has been accomplished by several means, including new extraction and synthetic procedures and by interaction with metal nanoparticles as well as electron donor molecules. In the presence of Fe(CO)(5) the arc discharge method yields nearly pure metallic nanotubes. Fluorous chemistry involving the preferential diazotization of metallic SWNTs offers a good procedure of obtaining the pure metallic species. Interaction of gold or platinum nanoparticles as well as of electron-donor molecules such as aniline and tetrathiafulvalene (TTF) transform semiconducting SWNTs into metallic ones. Raman and electroni spectroscopies provide ideal means to monitor enrichment of metallic SWNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the process of electronic excitation energy transfer from a fluorophore to the electronic energy levels of a single-walled carbon nanotube. The matrix element for the energy transfer involves the Coulombic interaction between the transition densities on the donor and the acceptor. In the Foumlrster approach, this is approximated as the interaction between the corresponding transition dipoles. For energy transfer from a dye to a nanotube, one can use the dipole approximation for the dye, but not for the nanotube. We have therefore calculated the rate using an approach that avoids the dipole approximation for the nanotube. We find that for the metallic nanotubes, the rate has an exponential dependence if the energy that is to be transferred, h is less than a threshold and a d(-5) dependence otherwise. The threshold is the minimum energy required for a transition other than the k(i,perpendicular to)=0 and l=0 transition. Our numerical evaluation of the rate of energy transfer from the dye pyrene to a (5,5) carbon nanotube, which is metallic leads to a distance of similar to 165 A degrees up to which energy transfer is appreciable. For the case of transfer to semiconducting carbon nanotubes, apart from the process of transfer to the electronic energy levels within the one electron picture, we also consider the possibility of energy transfer to the lowest possible excitonic state. Transfer to semiconducting carbon nanotubes is possible only if>=epsilon(g)-epsilon(b). The long range behavior of the rate of transfer has been found to have a d(-5) dependence if h >=epsilon(g). But, when the emission energy of the fluorophore is in the range epsilon(g)>h >=epsilon(g)-epsilon(b), the rate has an exponential dependence on the distance. For the case of transfer from pyrene to the semiconducting (6,4) carbon nanotube, energy transfer is found to be appreciable up to a distance of similar to 175 A degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic approach to 3-alkoxythapsane, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. A combination of alkylation, orthoester Claisen rearrangement and intramolecular diazoketone cyclopropanation has been employed for the creation of the three requisite contiguous quaternary carbon atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) were discovered by Iijima in 1991 as the fourth form of carbon. Carbon nanotubes are the ultimate form of the carbon fibre because of its high Young's modulus in the order of 1 TPa, which is very useful for load transfer in nanocomposites. In the present work, CNT/Cu nanocomposites were fabricated by the powder metallurgy technique, and after extrusion of the nanocomposites, bright field transmission electron microscopic studies were carried out. From the transmission electron microscopic images obtained, a novel method of ascertaining the Young's modulus of multiwalled CNTs is worked out in the present paper, which turns out to be 0.94 TPa, which is consistent with experimental results. Furthermore, an attempt is made to investigate the microhardness of copper by reinforcing it with multiwalled CNTs. There is an increase in hardness by twofold in CNT/Cu nanocomposites as compared to pure Cu matrix. This is due to high relative density, even distribution of CNTs and proper bonding at CNT/Cu interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow of a liquid on single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response is found to be logarithmic in the flow speed over a wide range. The magnitude of the flow induced electrical signal generated depends sensitively on the ionic conductivity and the polar nature of the liquid, and electrical biasing of the nanotubes can control its direction. Our measurements suggest that the dominant mechanism responsible for this highly sub-linear response should involve a direct forcing of the free charge carriers in the nanotubes by the fluctuating Coulombic field of the liquid flowing past it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of C4 dicarboxylic acids in Plasmodium berghei by carbon dioxide fixation reaction has been demonstrated by the use of labeled NaH14CO3. The reactions require glucose, which may be required not only as an energy source but also to contribute to the formation of pyruvate in the process of carbon dioxide fixation. Intracellular concentration of pyruvate may play an important role in the metabolism of P. berghei; an increased intracellular level of pyruvate seems to be a prerequisite before some of these reactions could be detected. The distribution of the label indicates extensive randomization of amino acids and suggests an extensive cycling of the amino acid and organic acid pools of the parasites. This investigation formed part of the thesis submitted in 1965 for the doctoral degree at the Indian Institute of Science, Bangalore 12, India, and was supported in part by the Council of Scientific and Industrial Research, India.