137 resultados para breaking waves
Resumo:
Solitary waves and cnoidal waves have been found in an adiabatic compressible atmosphere which, under ambient conditions, has winds, and is isothermal. The theory is illustrated with an example for which the background wind is linearly increasing. It is found that the number of possible critical speeds of the flow depends crucially on whether the Richardson number is greater or less than one‐fourth.
Resumo:
The present investigation of ion-acoustic waves is based on the study of the nonlinearity of plasma waves in a dispersive medium. Here the authors study ion-acoustic solitary waves in a warm ion plasma with non-isothermal electrons and then the results for solitary waves in a plasma with isothermal electrons are obtained. Incorporating the previous results obtained from the solitary wave solutions, the authors generalize the effect of negative ions on ion-acoustic waves in plasmas consisting of either a warm or cold ion species. A reflection phenomenon of ions in these waves is also studied. These results can be generalized, but the discussion is limited to a particular model of the plasma.
Resumo:
Solitary waves and cnoidal waves have been found in an adiabatic compressible atmosphere which, under ambient conditions, has winds, and is isothermal. The theory is illustrated with an example for which the background wind is linearly increasing. It is found that the number of possible critical speeds of the flow depends crucially on whether the Richardson number is greater or less than one‐fourth.
Resumo:
An integrodifferential formulation for the equation governing the Alfvén waves in inhomogeneous magnetic fields is shown to be similar to the polyvibrating equation of Mangeron. Exploiting this similarity, a time‐dependent solution for smooth initial conditions is constructed. The important feature of this solution is that it separates the parts giving the Alfvén wave oscillations of each layer of plasma and the interaction of these oscillations representing the phase mixing.
Resumo:
We study parametric Decay Instabilities (PDI) using the kinetic description, in the homogeneous and unmagnetic plasmas. These instabilities cause anomalous absorption of the incident electromagnetic (e.m) radiations. The maximum plasma temperatures reached are functionas of luminocity of the non-thermal radio radiation and the plasma parameters.
Resumo:
It is proposed that the mathematical analysis of the Alfven wave equation in inhomogeneous magnetic fields which explain the resonance absorption of Alfven surface waves near a resonant layer can also be used to show that the magnetic reconnection process can arise near the zero-frequency resonant layer driven by VLF Alfven surface waves. It is suggested that the associated phenomena of resonant absorption and magnetic reconnection can account for the recent observations of intense magnetic activity in the long-period geomagnetic micropulsation range, at cusp latitudes, during flux transfer events.
Resumo:
The conditions under which the hydromagnetic interface waves can exist at a magnetic interface is deduced. Using these conditions, it is shown that a slow interface wave with a phase velocity about 5Km/s and a fast interface wave with a phase velocity 6.5 to 8km/s at the photospheric level can exist.
Resumo:
The Landau damping of sound waves in a plasma consisting of ensemble of magnetic flux tubes is discussed. It is shown that sound waves cannot be Landau damped in general but under certain restricted conditions on plasma parameters the possibility of absorption of these waves can exist. The possibility of radiative damping of the acoustic waves along the magnetic filaments is also discussed. It appears that the most plausible mechanism of damping of sound waves in a plasma consisting of magnetic filaments can be due to scattering of a sound wave by the filaments.
Resumo:
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.
Resumo:
Normal mode sound propagation in an isovelocity ocean with random narrow-band surface waves is considered, assuming the root-mean-square wave height to be small compared to the acoustic wavelength. Nonresonant interaction among the normal modes is studied straightforward perturbation technique. The more interesting case of resonant interaction is investigated using the method of multiple scales to obtain a pair of stochastic coupled amplitude equations which are solved using the Peano-Baker expansion technique. Equations for the spatial evolution of the first and second moments of the mode amplitudes are also derived and solved. It is shown that, irrespective of the initial conditions, the mean values of the mode amplitudes tend to zero asymptotically with increasing range, the mean-square amplitudes tend towards a state of equipartition of energy, and the total energy of the modes is conserved.