121 resultados para Zr
Resumo:
The microstructural changes of Al-22 wt%U and Al-46 wt%U alloys containing 3 wt% Zr were investigated after heat treatment at 620 degrees C for 1 to 45 days, Though it is reported that addition of similar to 3 wt% Zr stabilizes the (U,Zr)Al-3 phase at room temperature, the present investigation shows that the (U,Zr)Al-3 phase is not stable but slowly transforms to the U0.9Al4 phase, The high temperature creep curves generated for these ternary alloys showed a wavy pattern which also suggests that the (U,Zr)Al-3 phase is not stable.
Resumo:
Several new Na, Y and Zr substituted derivatives of Ca-0.5 Ti-2(PO4)(3) (CTP) have been synthesized. These derivatives retain the hexagonal structure of the parent (CTP) compound with minor changes in lattice parameters. Linear thermal expansion coefficients (alpha) have been obtained using a high sensitivity dilatometer.
Resumo:
Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.
Resumo:
Controlled pyrolysis of Al(OBus)(3), Zr(OPrn)(4) and their mixtures in ethyl acetate induced using microwaves of 2.45 GHz frequency has been carried out. Microwave irradiation yields second-stage precursors for the preparation of respective oxides and their composites. It is observed that the microwave irradiation has a directive influence on the morphology of the ultimate oxide products. Al2O3, ZrO2 and the two composites 90% Al2O3-10% ZrO2 and 90% ZrO2-10% Al2O3 are also found to be sintered to very high densities within 35 min of microwave irradiation by the use of beta-SiC as a secondary susceptor.
Resumo:
Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared. in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent beta (bcc) and the product alpha (hcp) or gamma-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared:, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IFS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10 (1) over bar 1}(alpha) ((1) over bar 123)(alpha) slip or twinning on (10 (1) over bar 1)(alpha) planes. Widmanstatten alpha precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the alpha/beta interface being decorated with a periodic array of (c + a) dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The alpha precipitates, forming in the retained beta phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103}(beta) - {113}(beta) poles, which are close to the specific variant of the {112}(beta) plane, which transforms into a prismatic plane of the type {1 (1) over bar 00}(alpha). The crystallography of the formation of the gamma-hydride phase (fct) from both the alpha and beta phases is seen to match the IFS predictions. While the beta-gamma transformation can be treated approximately as a simple shear on the basal plane involving a change in the stacking sequence, the alpha-gamma transformation call be conceptually broken into a alpha --> beta transformation following the Burgers correspondence and the simple beta-gamma shear process. The active eutectoid decomposition in the Zr-Cu system, beta --> alpha + beta', has been described in terms of cooperative growth of the alpha phase from the beta phase through the Burgers correspondence and of the partially ordered beta' (structurally similar to the equilibrium Zr2Cu phase) through an ordering process. Similarities and differences in crystallographic features of these transformations have been discussed. and the importance of the invariant line vector in deciding the geometry of the corresponding habit planes has been pointed out.
Resumo:
Fine particle and large surface area Cu/CeO2 catalysts of crystallite sizes in the range of 100-200 Angstrom synthesized by the solution combustion method have been investigated for NO reduction. Five percent Cu/CeO2 catalyst shows nearly 100% conversion of NO by NH3 below 300 degrees C, whereas pure ceria and Zr, Y, and Ca doped ceria show 85-95% NO conversion above 600 degrees C. Similarly NO reduction by CO has been observed over 5% Cu/CeO2 with nearly 100% conversion below 300 degrees C. Hydrocarbon (n-butane) oxidation by NO to CO2, N-2, and H2O has also been demonstrated over this catalyst below 350 degrees C making Cu/CeO2 a new NO reduction catalyst in the low temperature window of 150-350 degrees C. Kinetics of NO reduction over 5% Cu/CeO2 have also been investigated. The rate constants are in the range of 1.4 x 10(4) to 2.3 x 10(4) cm(3) g(-1) s(-1) between 170 and 300 degrees C. Cu/CeO2 catalysts are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy where Cu2+ ions are shown to be dispersed on the CeO2 surface. (C) 1999 Academic Press.
Resumo:
We have previously reported that both Ca2+ and staurosporine-sensitive protein kinase(s) are involved in the cytokinin zeatin induction of cucumber chitinase activity and its protein content (Barwe et al. 2001). To further characterize signal transduction events involved in this cytokinin induction of chitinase gene expression, Northern hybridizations of total RNAs prepared from excised, dark-grown cucumber cotyledons treated with cytokinins and/or various agonists and antagonists of signal transduction components, were carried out using a cucumber acidic chitinase (CACHT) cDNA probe (Metraux et al. 1989). CACHT mRNA increased by approximately 5- to 6-fold in response to exogenous zeatin (Z), zeatin riboside (ZR), and benzyladenine (BA) treatment, but failed to accumulate in response to kinetin (K). Among the cytokinins tested, Z was most effective. The Z-induced accumulation of CACHT mRNA was inhibited by a plasma membrane Ca2+ channel blocker verapamil. Treatment of cotyledons with exogenous CaCl2 and calcium ionophore A23187 in the presence and absence of cytokinin enhanced CACHT mRNA accumulation. These two observations suggest the participation of extracellular calcium in signaling Z-induction. Furthermore, the presence of staurosporine (an inhibitor of protein kinase) in Z treatment reduced CACHT mRNA, suggesting the involvement of phosphorylation of one or more cellular proteins. In addition, we provide evidence that the Z-induction of CACHT mRNA is blocked by protein synthesis inhibitor cycloheximide treatment. Taken together, these results suggest that Ca2+ influx from extracellular space, protein phosphorylation, and concurrent protein synthesis events participate in cytokinin signaling during Z-induced CACHT transcript accumulation.
Effect of Nature of the Precursor on Crystallinity and Microstructure of MOCVD-Grown ZrO2 Thin Films
Resumo:
In the present work, we report the deposition of zirconia thin films on Si(100) at various substrate temperatures by low-pressure metalorganic chemical vapor deposition (MOCVD). Three different zirconium complexes, viz., tetrakis(2,4-pentadionato)zirconium(IV), [Zr(pd)4], tetrakis(2,2,6,6-tetramethyl-3,5-heptadionato)zirconium(IV), [Zr(thd)4], and tetrakis(t-butyl-3-oxo-butanoato)zirconium(IV), [Zr(tbob)4] are used as precursors. The relationship between the molecular structures of the precursors and their thermal properties, as examined by TG/DTA is presented. The films deposited using these precursors have distinctly different morphology, though all of them are of the cubic phase. The films grown from Zr(thd)4 are well crystallized, showing faceted growth at 575°C, whereas the films grown from Zr(pd)4 and Zr(tbob)4 are not well crystallized, and display cracks. These differences in the observed microstructure may be attributed to the different chemical decomposition pathways of the precursors during the film growth, which influence the nucleation and the growth processes. This is also evidenced by the different kinetics of growth from these three precursors under otherwise identical CVD conditions. The details of thin film deposition, and film microstructure analysis by XRD and SEM is presented. The dielectric behavior of the films deposited from different precursors, as studied by C-V measurements, are compared.
Resumo:
Elasto-plastic response of bulk metallic glasses (BMGs) follows closely the response of granular materials through pressure dependent (or normal stress) yield locus and shear stress induced material dilatation. On a micro-structural level, material dilatation is responsible for stress softening and formation of localized shear band, however its influence on the macro-scale flow and deformation is largely unknown. In this work, we systematically analyze the effect of material dilatation on the gross indentation response of Zr-based BMG via finite element simulation. The strengthening/softening effect on the load-depth response and corresponding stress-strain profiles are presented in light of differences in elastic-plastic regimes under common indenters. Through comparison with existing experimental results, we draw conclusions regarding selection of suitable dilatation parameters for accurately predicting the gross response of BMGs
Resumo:
In last 40 years, catalysis for NO (x) removal from exhaust gas has received much attention to achieve pollution free environment. CeO(2) has been found to play a major role in the area of exhaust catalysis due to its unique redox properties. In last several years, we have been exploring an entirely new approach of dispersing noble metal ions in CeO(2) and TiO(2) for redox catalysis. We have extensively studied Ce(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh), Ce(1-x-y) A (x) M (y) O(2-delta) (A = Ti, Zr, Sn, Fe; M = Pd, Pt) and Ti(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh, Ru) catalysts for exhaust catalysis especially NO reduction and CO oxidation, structure-property relation and mechanism of catalytic reactions. In these catalysts, lower valent noble metal ion substitution in CeO(2) and TiO(2) creates noble metal ionic sites and oxide ion vacancy. NO gets molecularly adsorbed on noble metal ion site and dissociatively adsorbed on oxide ion vacancy site. Dissociative chemisorption of NO on oxide ion vacancy leads to preferential conversion of NO to N(2) instead of N(2)O over these catalysts. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) are much more catalytically active than conventional nano crystalline noble metal catalysts especially for NO reduction.
Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV(2)O(7)
Resumo:
A new series of compounds identified in the phase diagram of ZrO(2)-V(2)O(8)-MoO(3) have been synthesized via the solution combustion method. Single crystals of one of the compounds in the series, ZrV(1.50)Mo(0.50)O(7.25), were grown by the melt-cool technique from the starting materials with double the MoO(3) quantity. The room temperature average crystal structure of the grown crystals was solved using the single crystal X-ray diffraction technique. The crystals belong to the cubic crystal system, space group Pa (3) over bar (No. 205) with a = 8.8969 (4) angstrom, V = 704.24 (6) angstrom(3), and Z = 4. The final R(1) value of 0.0213 was achieved for 288 independent reflections during the structure refinement. The Zr(4+) occupies the special position (4a) whereas V(5+) and Mo(6+) occupy two unique (8c) Wyckoff positions. Two fully occupied O atoms, (24d) and (4b), one partially occupied 0 atom (8c) have been identified for this molybdovanadate, which is a unique feature for these crystals. The structure is related to both ZrV(2)O(7) and cubic ZrMo(2)O(8). The temperature dependent single crystal studies show negative thermal expansion above 370 K. The compounds have been characterized by powder X-ray diffraction, solid-state UV-vis diffuse reflectance spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photocatalytic activity of these compounds has been investigated for the degradation of various dyes, and these compounds show specificity toward the degradation of non-azoic dyes.
Resumo:
A novel size dependent FCC (face-centered-cubic) -> HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions < 20 are found unstable in nature, and they undergo a FCC -> HCP phase transformation, which is driven by tensile surface stress induced high internal compressive stresses. FCC nanowire with cross-sectional dimensions > 20 , in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC -> HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Resumo:
Metal-mold reaction during Ti casting in zircon sand molds has been studied using scanning electron microscope, energy and wave length dispersive analysis of X-rays, X-ray diffraction, microhardness measurements, and chemical analysis. Experimental results suggest that oxides from the mold are not fully leached out by liquid Ti, but oxygen is preferentially transferred to liquid Ti, leaving behind metallic constituents in the mold as lower oxides or intermetallics of Ti. The electron microprobe analysis has revealed the depth profile of contaminants from the mold into the cast Ti metal. The elements Si, Zr and O were found to have diffused to a considerable distance within the Ti metals. A possible mechanism has now been evolved in regard to the reactions that occur during casting of Ti in zircon sand molds.
Resumo:
Stable and highly reproducible current‐limiting characteristics are observed for polycrystalline ceramics prepared by sintering mixtures of coarse‐grained, donor‐doped BaTiO3 (tetragonal) as the major phase and ultrafine, undoped cubic perovskite such as BaSnO3, BaZrO 3, SrTiO3, or BaTiO3 (cubic). The linear current‐voltage (I‐V) relation changes over to current limiting as the field strength increases, when thermal equilibrium is attained. The grain‐boundary layers with low donor and high Sn, Zr, or Sr have depleted charge carrier density as compared to that in the grain bulk. The voltage drop at the grain‐boundary layers diminishes the temperature gradient between the interior and surface regions.
Resumo:
Epitaxial-Bain-Path and Uniaxial-Bain-Path studies reveal that a B2-CuZr nanowire with Zr atoms on the surface is energetically more stable compared to a B2-CuZr nanowire with Cu atoms on the surface. Nanowires of cross-sectional dimensions in the range of similar to 20-50 are considered. Such stability is also correlated with the initial state of stress in the nanowires. It is also demonstrated here that a more stable structure, i.e., B2-CuZr nanowire with Zr atoms at surface shows improved yield strength compared to B2-CuZr nanowire with Cu atoms at surface site, over range of temperature under both the tensile and the compressive loadings. Nearly 18% increase in the average yield strength under tensile loading and nearly 26% increase in the averaged yield strength under compressive loading are observed for nanowires with various cross-sectional dimensions and temperatures. It is also observed that the B2-CuZr nanowire with Cu atom at the surface site shows a decrease in failure/plastic strain with an increase in temperature. On the other hand, B2-CuZr nanowires with Zr at the surface site shows an improvement in failure/plastic strain, specially at higher temperature as compared to the B2-CuZr nanowires which are having Cu atoms at the surface site. Finally, a possible design methodology for an energetically stable nano-structure with improved thermo-mechanical properties via manipulating the surface atom configuration is proposed.