101 resultados para Waste paper.
Resumo:
Resin impregnated paper (RIP) is a relatively new insulation system recommended for the use in transformer bushings. In the recent past, RIP has acquired prominence as insulation in bushings, over conventional oil impregnated paper (OIP), in view of its overwhelming advantages the more important among them being low dielectric loss and possibility for positioning the bushing at any desired angle over the transformer. In addition, the fact that such systems do not pose problems of fire hazard is counted as a very important consideration. The disadvantage of RIP compared to OIP, however, is its much higher cost and involved manufacturing process. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. It is therefore essential to take serious note of this aspect, to arrest rapid deterioration of bushing. The degradation of dry-type insulation such as RIP is often due to thermal stress. The long time performance thereof, depends strongly, on the maximum operating temperature. With this in view, the Authors have developed a theoretical model and computational method to study the temperature distribution in the body of insulation. The Authors consider that the basis for the model as being the temperature and electric stress aided AC conductivity. The ensuing heat balance (continuity) equations in 2-D cylindrical geometry are treated as a Dirichelet-Neumann boundary value problem.
Resumo:
Electrical failure of insulation is known to be an extremal random process wherein nominally identical pro-rated specimens of equipment insulation, at constant stress fail at inordinately different times even under laboratory test conditions. In order to be able to estimate the life of power equipment, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. In the present work, Resin Impregnated Paper (RIP) a relatively new insulation system of choice used in transformer bushings, is taken as an example. The failure data has been processed using proven statistical methods, both graphical and analytical. The physical model governing insulation failure at constant accelerated stress has been assumed to be based on temperature dependent inverse power law model.
Resumo:
Urban water bodies frequently receive untreated sewage and water levels in such water bodies are maintained by daily inputs of sewage. They function as “variable-zone” anaerobic-aerobic lagoons suffering several macrophyte, biotic and abiotic stresses. We have studied two such lakes in Bangalore (Bellandur-360 ha and Varthur-220 ha) to understand whether such an occurrence could be made beneficial (maintaining water levels as well as treatment). Such hypertrophic water body receives sewage at 180-250mg/L and is discharged at 25-80mg/L COD/BOD in different seasons. In an earlier study we reported macrophyte altering the purification function of the water body. In this paper we studied the impact of phytoplankton dynamics and macrophyte cover on the functions such as organic load removal. Algal community analysis, algal biomass, macrophyte cover, water quality, nutrient status was studied seasonally during 2009-2010. Oxygen deficiency and sometimes anoxia, recorded from surface samples resulted in high quantities of NH4+-N (30-40mg/L) and phosphate (0.5-4mg/L)-characteristics of anoxic hypertrophic urban lakes. The productiveness favoured high phytoplanktonic community characterized by small cells (<10μm; Chlorella sp. - highest numbers). The lake could be clearly demarcated into an initial anaerobic zone (40% area), a facultative zone (20%) and an aerobic zone (40%) based on redox values and GIS/bathymetry. During summer the lake is covered by floating macrophytes converting the lake into an anoxic/anaerobic water pool subduing the water purification function as well as aesthetics. When macrophytes are controlled such sewage fed water bodies can be used for treating urban wastewater while also maintaining water sustainability in these semi-arid ecosystems. This paper reports the community dynamics of phytoplankton, their function and competition with macrophytes.
Resumo:
In this paper the seismic slope stability analyses are performed for a typical section of 44 m high water retention type tailings earthen dam located in the eastern part of India, using both the conventional pseudo-static and recent pseudo-dynamic methods. The tailings earthen dam is analyzed for different upstream conditions of reservoir like filled up with compacted and non-compacted dumped waste materials with different water levels of the pond tailings portion. Phreatic surface is generated using seepage analysis in geotechnical software SEEP/W and that same is used in the pseudo-static and pseudo-dynamic analyses to make the approach more realistic. The minimum values of factor of safety using pseudo-static and pseudo-dynamic method are obtained as 1.18 and 1.09 respectively for the chosen seismic zone in India. These values of factor of safety show clearly the demerits of conventional pseudo-static analysis compared to recent pseudo-dynamic analysis, where in addition to the seismic accelerations, duration, frequency of earthquake, body waves traveling during earthquake and amplification effects are considered.
Resumo:
Bentonite clays are proven to be attractive as buffer and backfill material in high-level nuclear waste repositories around the world. A quick estimation of swelling pressures of the compacted bentonites for different clay-water-electrolyte interactions is essential in the design of buffer and backfill materials. The theoretical studies on the swelling behavior of bentonites are based on diffuse double layer (DDL) theory. To establish theoretical relationship between void ratio and swelling pressure (e versus P), evaluation of elliptic integral and inverse analysis are unavoidable. In this paper, a novel procedure is presented to establish theoretical relationship of e versus P based on the Gouy-Chapman method. The proposed procedure establishes a unique relationship between electric potentials of interacting and non-interacting diffuse clay-water-electrolyte systems. A procedure is, thus, proposed to deduce the relation between swelling pressures and void ratio from the established relation between electric potentials. This approach is simple and alleviates the need for elliptic integral evaluation and also the inverse analysis. Further, application of the proposed approach to estimate swelling pressures of four compacted bentonites, for example, MX 80, Febex, Montigel and Kunigel V1, at different dry densities, shows that the method is very simple and predicts solutions with very good accuracy. Moreover, the proposed procedure provides continuous distributions of e versus P and thus it is computationally efficient when compared with the existing techniques.
Resumo:
In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.
Resumo:
An industrial waste liquor having high sulfate concentrations was subjected to biological treatment using the sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans. Toxicity levels of different sulfate, cobalt and nickel concentrations toward growth of the SRB with respect to biological sulfate reduction kinetics was initially established. Optimum sulfate concentration to promote SRB growth amounted to 0.8 - 1 g/L. The strain of D. desulfuricans used in this study initially tolerated up to 4 -5 g/L of sulfate or 50 mg/L of cobalt and nickel, while its tolerance could be further enhanced through adaptation by serial subculturing in the presence of increasing concentrations of sulfate, cobalt and nickel. From the waste liquor, more than 70% of sulfate and 95% of cobalt and nickel could be precipitated as sulfides, using a preadapted strain of D. desulfuricans. Probable mechanisms involving biological sulfide precipitation and metal adsorption onto precipitates and bacterial cells are discussed.
Resumo:
This paper presents the case history of the construction of a 3 m high embankment on the geocell foundation over the soft settled red mud. Red mud is a waste product from the Bayer process of Aluminum industry. Geotechnical problems of the site, the design of the geocell foundation based on experimental investigation and the construction sequences of the geocell foundations in the field are discussed in the paper. Based on the experimental studies, an analytical model was also developed to estimate the load carrying capacity of the soft clay bed reinforced with geocell and combination of geocell and geogrid. The results of the experimental and analytical studies revealed that the use of combination of geocell and the geogrid is always beneficial than using the geocell alone. Hence, the combination of geocell and geogrid was recommended to stabilize the embankment base. The reported embankment is located in Lanjigharh (Orissa) in India. Construction of the embankment on the geocell foundation has already been completed. The constructed embankmenthas already sustained two monsoon rains without any cracks and seepage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The conceptual model for deep geological disposal of high level nuclear waste (HLW) is based on multiple barrier system consisting of natural and engineered barriers. Buffer/backfill material is regarded as the most important engineered barrier in HLW repositories. Due to large swelling ability, cation adsorption capacity, and low permeability bentonite is considered as suitable buffer material in HLW repositories. Japan has identified Kunigel VI bentonite, South Korea - Kyungju bentonite, China - GMZ bentonite, Belgium - FoCa clay, Sweden - MX-80 bentonite, Spain - FEBEX bentonite and Canada - Avonseal bentonite as candidate bentonite buffer for deep geological repository program. An earlier study on Indian bentonites by one of the authors suggested that bentonite from Barmer district of Rajasthan (termed Barmer 1 bentonite), India is suited for use as buffer material in deep geological repositories. However, the hydro-mechanical properties of the Barmer 1 bentonite are unavailable. This paper characterizes Barmer 1 bentonite for hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength at different dry densities. The properties of Barmer 1 bentonite were compared with bentonite buffers reported in literature and equations for designing swell pressure and saturated permeability coefficient of bentonite buffers were arrived at. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The presence of moisture in oil impregnated paper insulation (OIP) is detrimental to its long time performance. Until recently, it was thought insulation ageing was only a function of temperature and electrical stress. It has now been realized that moisture in all its forms causes rapid degradation of the electrical and mechanical properties with time. In this study, insulation paper samples were conditioned for desired level of moisture and were impregnated with premium quality transformer oil. The oil impregnated samples with 1 to 3 % moisture content were aged at 90 to 130 C. The indices for determining the extent of ageing considered in this work are degree of polymerization (DP), furan, carbon monoxide and carbon dioxide content. These quantities were monitored throughout the ageing experimental run. End-of-life (EOL) criterion used here is the reduction in the value of DP. Phenomenological models for estimating the service life of insulation are proposed and are validated against actual experimental data.
Resumo:
A low-cost fabrication process for forming conductive copper lines on paper is presented. An office inkjet printer was used to deposit desired patterns of silver nitrate and tannic acid solutions sequentially on paper. Silver nitrate was instantaneously reduced in situ on paper by tannic acid at room temperature to form silver nanoparticles, which acted as catalysts for the subsequent electroless deposition of copper. The copper films were 1.8 mu m thick, and the sheet resistance of the copper film on paper was 9 Omega/square. A dual monopole ultrawide band antenna was fabricated on paper and its performance was equivalent to that of a similar antenna fabricated on a copper-film covered Kapton substrate using conventional lithographic processes. The paper-based conductive copper films fabricated using the facile process presented herein will aid the development of low-cost flexible circuits and sensors.
Resumo:
Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.
Resumo:
Simple, universally adaptable techniques for fabricating conductive patterns are required to translate laboratory-scale innovations into low-cost solutions for the developing world. Silver nanostructures have emerged as attractive candidates for forming such conductive patterns. We report here the in situ formation of conductive silver-nanowire networks on paper, thereby eliminating the need for either cost-intensive ink formulation or substrate preparation or complex post-deposition sintering steps. Reminiscent of the photographic process of `salt printing', a desktop office printer was used to deposit desired patterns of silver bromide on paper, which were subsequently exposed to light and then immersed in a photographic developer. Percolating silver nanowire networks that conformally coated the paper fibres were formed after 10 min of exposure to light from a commercial halogen lamp. Thus, conductive and patterned films with sheet resistances of the order of 4 Omega/rectangle can be easily formed by combining two widely used processes - inkjet printing and photographic development.
Resumo:
In order to explore the potential use of fly ash and plastic waste in bulk quantities in civil engineering applications, it is necessary to understand the behavior of fly ash and fly ash mixed with plastic waste. These materials are considered as wastes and in this study, it is shown that combination of fly ash and plastic waste is very useful. In this regard, various tests such as classification tests, unconfined compressive strength and compressibility tests, consolidated undrained tests, and California bearing ratio tests were conducted. The results indicated that the inclusion of plastic waste in fly ash is effective in improving the engineering properties of fly ash in terms of compressive strength, shear strength parameters, and CBR values. In order to understand the effect of sample size on the shear strength parameters of fly ash and fly ash mixed with plastic waste, consolidated undrained tests were conducted with sample sizes of 38x76mm and 50x100mm. The results of the tests indicate that the shear strength increases with the increase in sample size. The implication of the use of fly ash mixed with plastic waste in unpaved roads is presented in terms of reduction of carbon print.