382 resultados para WAVE-FUNCTIONS
Resumo:
The special class of quasi-simple wave solutions is studied for the system of partial differential equations governing inviscid acoustic gravity waves. It is shown that these traveling wave solutions do not admit shocks. Periodic solutions are found to exist when there is no propagation in the vertical direction. The solutions for some particular cases are depicted graphically. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
A theoretical study on the propagation of plane waves in the presence of a hot mean flow in a uniform pipe is presented. The temperature variation in the pipe is taken to be a linear temperature gradient along the axis. The theoretical studies include the formulation of a wave equation based on continuity, momentum, and state equation, and derivation of a general four-pole matrix, which is shown to yield the well-known transfer matrices for several other simpler cases.
Resumo:
The problem of excitation of 11zultilayercd-graded-dielectric-coatedc onductor by a magnetic ring source is fornzulated in the ,form of a contour integrul which is rolved by using the method of steepest descent. Numerical evaluation of launching efiiency shows that high value of about 90 percent can be attained by choosing proper dimensions of the launcher with respect to the dimension of the surface wave line.
Resumo:
A nonexhaustive procedure for obtaining minimal Reed-Muller canonical (RMC) forms of switching functions is presented. This procedure is a modification of a procedure presented earlier in the literature and enables derivation of an upper bound on the number of RMC forms to be derived to choose a minimal one. It is shown that the task of obtaining minimal RMC forms is simplified in the case of symmetric functions and self-dual functions.
Resumo:
Speed control of ac motors requires variable frequency, variable current, or variable voltage supply. Variable frequency supply can be obtained directly from a fixed frequency supply by using a frequency converter or from a dc source using inverters. In this paper a control technique for reference wave adaptive-current generation by modulating the inverter voltage is explained. Extension of this technique for three-phase induction-motor speed control is briefly explained. The oscillograms of the current waveforms obtained from the experimental setup are also shown.
Resumo:
In this paper, we consider a more realistic model of a spherical blast wave of moderate strength. An arbitrary number of terms for the series solution in each of the regions behind the main shock - the expansion region, the nearly uniform region outside the main expansion and the region between the contact surface and the main shock, have been generated and matched across the boundaries. We then study the convergence of the solution by using Pade approximation. It constitutes a genuine analytic solution for a moderately strong explosion, which, however, does not involve a secondary shock. The pressure distribution behind the shock however shows some significant changes in the location of the tail of the rarefaction and the interface, in comparison to the planar problem. The theory developed for the spherical blasts is also extended to cylindrical blasts. The results are compared with the numerical solution.
Resumo:
We extend some of the classical connections between automata and logic due to Büchi (1960) [5] and McNaughton and Papert (1971) [12] to languages of finitely varying functions or “signals”. In particular, we introduce a natural class of automata for generating finitely varying functions called View the MathML source’s, and show that it coincides in terms of language definability with a natural monadic second-order logic interpreted over finitely varying functions Rabinovich (2002) [15]. We also identify a “counter-free” subclass of View the MathML source’s which characterise the first-order definable languages of finitely varying functions. Our proofs mainly factor through the classical results for word languages. These results have applications in automata characterisations for continuously interpreted real-time logics like Metric Temporal Logic (MTL) Chevalier et al. (2006, 2007) [6] and [7].
Resumo:
In order to protect the critical electronic equipment/system against damped sine transient currents induced into its cables due to transient electromagnetic fields, switching phenomena, platform resonances, etc. it is necessary to provide proper hardening. The hardness assurance provided can be evaluated as per the test CS 116 of MIL STD 461E/F in laboratory by generating & inducing the necessary damped sine currents into the cables of the Equipment Under Test (EUT). The need and the stringent requirements for building a damped sine wave current generator for generation of damped sine current transients of very high frequencies (30 MHz & 100 MHz) have been presented. A method using LC discharge for the generation has been considered in the development. This involves building of extremely low & nearly loss less inductors (about 5 nH & 14 nH) as well as a capacitor & a switch with much lower inductances. A technique for achieving this has been described. Two units (I No for 30 MHz. & 100 MHz each) have been built. Experiments to verify the output are being conducted.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
This paper represents the effect of nonlocal scale parameter on the wave propagation in multi-walled carbon nanotubes (MWCNTs). Each wall of the MWCNT is modeled as first order shear deformation beams and the van der Waals interactions between the walls are modeled as distributed springs. The studies shows that the scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or group speed tends to zero). The frequency at which this phenomenon occurs is called the ``Escape frequency''. The analysis shows that, for a given N-walled carbon nanotube (CNT). the nonlocal scaling parameter has a significant effect on the shear wave modes of the N - 1 walls. The escape frequencies of the flexural and shear wave modes of the N-walls are inversely proportionl to the nonlocal scaling parameter. It is also shown that the cut-off frequencies are independent of the nonlocal scale parameter. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The dispersion and impedance characteristics of an inverted slot-mode (ISM) slow-wave structure computed by three different techniques, i.e., an analytical model based on a periodic quasi-TEM approach, an equivalent-circuit model, and 3-D electromagnetic simulation are obtained and compared. The comparison was carried out for three different slot-mode structures at S-, C-, and X-bands. The approach was also validated with experimental measurements on a practical X-band ISM traveling-wave tube. The design of ferruleless ISM slow-wave structures, both in circular and rectangular formats, has also been proposed and the predicted dispersion characteristics for these two geometries are compared with 3-D simulation and cold-test measurements. The impedance characteristics for all three designs are also compared.
Resumo:
A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.
Resumo:
Close relationships between guessing functions and length functions are established. Good length functions lead to good guessing functions. In particular, guessing in the increasing order of Lempel-Ziv lengths has certain universality properties for finite-state sources. As an application, these results show that hiding the parameters of the key-stream generating source in a private key crypto-system may not enhance the privacy of the system, the privacy level being measured by the difficulty in brute-force guessing of the key stream.