114 resultados para Transport phenomena in semiconductors
Resumo:
As the study of electrical breakdown phenomena in vacuum systems, gains more importance, a thorough understanding of the breakdown mechanism at high voltages necessitates a chamber for experimental studies. An epoxy-resin chamber has been constructed by casting ring sections which were joined together. The advantages of such a chamber over the conventional metal or glass chamber are given especially as regards the electric field configuration, high voltage lead-in, and the ease of construction. Special facilities can be incorporated while constructing the chamber which makes it more versatile; for example, in pre-breakdown current measurements, electron beam focusing studies, etc.
Resumo:
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.
Resumo:
The kinetics of the processes in facing targets sputtering of multicomponent oxide films is presented. The novel configuration of the process exhibits an enhanced ionization efficiency. Discharge diagnostics performed using optical emission spectroscopy revealed strong dependence of plasma parameters on process conditions. Numerical simulation based on thermalization and diffusion of sputtered atoms has been performed to estimate the transport efficiency in off-axis mode. Composition, structure and epitaxial quality of YBa2Cu3O7-x films prepared was found to be strongly dependent on atomic flux ratios (of Cu/Y and Ba/Y) arriving at the substrate, resputtering effect and phase stability of YBa2Cu3O7-x These studies have been shown to be useful in understanding the complex processes that occur in sputtering of multicomponent films. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
In recent times antiferroelectric thin-film material compositions have been identified as one of the most significant thin films for development of devices such as high charge storage, charge couplers/decouplers, and high strain microelectromechanical systems. Thus, understanding the dielectric and electrical properties under an ac signal drive in these antiferroelectric thin-film compositions, such as lead zirconate thin films, and the effect of donor doping on them is very necessary. For this purpose, thin films of antiferroelectric lead zirconate and La-modified lead zirconate thin films with mole % concentrations of 0, 3, 5, and 9 have been deposited by pulsed excimer laser ablation. The dielectric and hysteresis properties have confirmed that with a gradual increase of the La content, the room-temperature antiferroelectric lead zirconate thin films can be modified into ferroelectric and paraelectric phases. ac electrical studies revealed that the polaronic related hopping conduction is responsible for the charge transport phenomenon in these films. With a La content of less than or equal to3 mole % in pure lead zirconate, the conductivity of the films has been reduced and followed by an increase of its conductivity for a greater than or equal to3% addition of La to lead zirconate thin films. The polaronic activation energies are also found to follow a similar trend as that of the conductivity.
Resumo:
When the cold accretion disc coupling between neutral gas and a magnetic field is so weak that the magnetorotational instability is less effective or even stops working, it is of prime interest to investigate the pure hydrodynamic origin of turbulence and transport phenomena. As the Reynolds number increases, the relative importance of the non-linear term in the hydrodynamic equation increases. In an accretion disc where the molecular viscosity is too small, the Reynolds number is large enough for the non-linear term to have new effects. We investigate the scenario of the `weakly non-linear' evolution of the amplitude of the linear mode when the flow is bounded by two parallel walls. The unperturbed flow is similar to the plane Couette flow, but with the Coriolis force included in the hydrodynamic equation. Although there is no exponentially growing eigenmode, because of the self-interaction, the least stable eigenmode will grow in an intermediate phase. Later, this will lead to higher-order non-linearity and plausible turbulence. Although the non-linear term in the hydrodynamic equation is energy-conserving, within the weakly non-linear analysis it is possible to define a lower bound of the energy (alpha A(c)(2), where A(c) is the threshold amplitude) needed for the flow to transform to the turbulent phase. Such an unstable phase is possible only if the Reynolds number >= 10(3-4). The numerical difficulties in obtaining such a large Reynolds number might be the reason for the negative result of numerical simulations on a pure hydrodynamic Keplerian accretion disc.
Resumo:
Lead-lanthanum-titanate (Pb0.72La0.28)TiO3 (PLT) is one of the interesting materials for DRAM applications due to its room temperature paraelectric nature and its higher dielectric permittivity. PLT thin films of different thickness ranging from 0.54- 0.9 mum were deposited on Pt coated Si substrates by excimer laser ablation technique. We have measured the voltage (field) dependence, the thickness dependence, temperature dependence of dc leakage currents and analysis is done on these PLT thin films. Current- voltage characteristics were measured at different temperatures for different thick films and the thickness dependence of leakage current has been explained by considering space charge limited conduction mechanism. The charge transport phenomena were studied in detail for films of different thicknesses for dynamic random access memory applications.
Resumo:
We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.
Transient analysis in Al-doped barium strontium titanate thin films grown by pulsed laser deposition
Resumo:
Thin films of (Ba0.5Sr0.5)TiO3 (BST) with different concentrations of Al doping were grown using a pulsed laser deposition technique. dc leakage properties were studied as a function of Al doping level and compared to that of undoped BST films. With an initial Al doping level of 0.1 at. % which substitutes Ti in the lattice site, the films showed a decrease in the leakage current, however, for 1 at. % Al doping level the leakage current was found to be relatively higher. Current time measurements at elevated temperatures on 1 at. % Al doped BST films revealed space-charge transient type characteristics. A complete analysis of the transient characteristics was carried out to identify the charge transport process through variation of applied electric field and ambient temperature. The result revealed a very low mobility process comparable to ionic motion, and was found responsible for the observed feature. Calculation from ionic diffusivity and charge transport revealed a conduction process associated with an activation energy of around 1 eV. The low mobility charge carriers were identified as oxygen vacancies in motion under the application of electric field. Thus a comprehensive understanding of the charge transport process in highly acceptor doped BST was developed and it was conclusive that the excess of oxygen vacancies created by intentional Al doping give rise to space-charge transient type characteristics. © 2001 American Institute of Physics.
Resumo:
Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.
Resumo:
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.
Resumo:
We present low-temperature electrical transport experiments in five field-effect transistor devices consisting of monolayer, bilayer, and trilayer MoS(2) films, mechanically exfoliated onto Si/SiO(2) substrate. Our experiments reveal that the electronic states In all films are localized well up to room temperature over the experimentally accessible range of gate voltage. This manifests in two-dimensional (2D) variable range hopping (VRH) at high temperatures, while below similar to 30 K, the conductivity displays oscillatory structures In gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T(0)) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges In the substrate is the dominant source of disorder in MoS(2) field-effect devices, which leads to carrier localization, as well.
Resumo:
We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.
Resumo:
Abstract | A growing interest in the research of chalcogenide glasses can be currently witnessed, which to a large extent is caused by newly opened fields of applications for these materials. Applications in the field of micro- and opto-electronics, xerography and lithography, acousto-optic and memory switching devices and detectors for medical imaging seem to be most remarkable. Accordingly, photo induced phenomena in chalcogenide glasses are attracting much interest. These phenomena can be found both in uniform thin films as well as multilayered films. Among amorphous multilayers, chalcogenide multilayers are attractive because of the potential it has for tailoring the optical properties. I will be presenting some basic idea of photoinduced effects followed by the diffusion mechanisms of Se, Sb and Bi in to As2S3 films.
Resumo:
This paper presents the results of a study on the effect of alumina nano-fillers on electrical tree growth in epoxy insulation. Treeing experiments were conducted at a fixed ac voltage of 15 kV, 50 Hz on unfilled epoxy samples as well as epoxy nanocomposites with different loadings of alumina nano-fillers. Time for tree inception as well as tree growth patterns were studied. The results show that there is a significant improvement in tree initiation time with the increase in nano-filler loading. Different tree growth patterns as well as slower tree growth with increasing filler loadings were observed in epoxy nanocomposites. The nature of the tree channel and the elemental composition of the material on the inner lining of the tree channels have been studied using SEM imaging and EDAX analysis respectively of the cut section of the tree channels. It has been shown that the type of bonding at the interface has an influence on the electrical tree growth pattern. The nature of the bonding at the interface between the epoxy and the nano-filler has been studied using FTIR spectrometry. Finally the influence of the interface on tree growth phenomena in nanocomposites has been explained by a physical model.
Resumo:
Investigations on the switching behaviour of arsenic-tellurium glasses with Ge or Al additives, yield interesting information about the dependence of switching on network rigidity, co-ordination of the constituents, glass transition & ambient temperature and glass forming ability.