81 resultados para Time scales


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We argued in arXiv: 1408.0624 that the quartic scalar field in AdS has features that could be instructive for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there have recently been observed in the full gravity theory as well. In this paper, we continue our investigation of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF), even for initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is exponentially suppressed in the mode number. Based on this and some related observations, we argue that there is no thermalization in the scalar TTF model within time-scales that go as similar to 1/epsilon(2), where epsilon measures the initial amplitude (with only low-lying modes excited). It is tempting to speculate that the result holds also for AdS collapse. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is considerable interest in powering and maneuvering nanostructures remotely in fluidic media using noninvasive fuel-free methods, for which small homogeneous magnetic fields are ideally suited. Current strategies include helical propulsion of chiral nanostructures, cilia-like motion of flexible filaments, and surface assisted translation of asymmetric colloidal doublets and magnetic nanorods, in all of which the individual structures are moved in a particular direction that is completely tied to the characteristics of the driving fields. As we show in this paper, when we use appropriate magnetic field configurations and actuation time scales, it is possible to maneuver geometrically identical nanostructures in different directions, and subsequently position them at arbitrary locations with respect to each other. The method reported here requires proximity of the nanomotors to a solid surface, and could be useful in applications that require remote and independent control over individual components in microfluidic environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphological changes in cells associated with disease states are often assessed using clinical microscopy. However, the changes in chemical composition of cells can also be used to detect disease conditions. Optical absorption measurements carried out on single cells using inexpensive sources, detectors can help assess the chemical composition of cells; thereby enable detection of diseases. In this article, we present a novel technique capable of simultaneously detecting changes in morphology and chemical composition of cells. The presented technique enables characterization of optical absorbance-based methods against microscopy for detection of disease states. Using the technique, we have been able to achieve a throughput of about 1000 cells per second. We demonstrate the proof-of-principle by detecting malaria in a given blood sample. The presented technique is capable of detecting very lower levels of parasitemia within time scales comparable to antigen-based rapid diagnostic tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work attempts to bring critical insights into the electromagnetic shielding efficiency in polymeric nanocomposites with respect to the particle size of magnetic nanoparticles added along with or without a conductive inclusion. To gain insight, various Ni-Fe (NixFe1-x; x = 10, 20, 40; Ni: nickel, Fe: iron) alloys were prepared by a vacuum arc melting process and different particle sizes were then achieved by a controlled grinding process for different time scales. Poly(vinylidene fluoride), PVDF based composites involving different particle sizes of the Ni-Fe alloy were prepared with or without multiwall carbon nanotubes (MWNTs) by a wet grinding approach. The Ni-Fe particles were thoroughly characterized with respect to their microstructure and magnetization; and the electromagnetic (EM) shielding efficiency (SE) of the resulting composites was obtained from the scattering parameters using a vector network analyzer in a broad range of frequencies. The saturation magnetization of Ni-Fe nanoparticles and the bulk electrical conductivity of PVDF/Ni-Fe composites scaled with increasing particle size of NiFe. Interestingly, the PVDF/Ni-Fe/MWNT composites showed a different trend where the bulk electrical conductivity and SE scaled with decreasing particle size of the Ni-Fe alloy. A total SE of similar to 35 dB was achieved with 50 wt% of Ni60Fe40 and 3 wt% MWNTs. More interestingly, the PVDF/Ni-Fe composites shielded the EM waves mostly by reflection whereas, the PVDF/Ni-Fe/MWNT shielded mostly by absorption. A minimum reflection loss of similar to 58 dB was achieved in the PVDF/Ni-Fe/MWNT composites in the X-band (8-12 GHz) for a particular size of Ni-Fe alloy nanoparticles. This study brings new insights into the EM shielding efficiency in PVDF/magnetic nanoparticle based composites in the presence and absence of conducting inclusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the long history, so far there is no general theoretical framework for calculating the acoustic emission spectrum accompanying any plastic deformation. We set up a discrete wave equation with plastic strain rate as a source term and include the Rayleigh-dissipation function to represent dissipation accompanying acoustic emission. We devise a method of bridging the widely separated time scales of plastic deformation and elastic degrees of freedom. While this equation is applicable to any type of plastic deformation, it should be supplemented by evolution equations for the dislocation microstructure for calculating the plastic strain rate. The efficacy of the framework is illustrated by considering three distinct cases of plastic deformation. The first one is the acoustic emission during a typical continuous yield exhibiting a smooth stress-strain curve. We first construct an appropriate set of evolution equations for two types of dislocation densities and then show that the shape of the model stress-strain curve and accompanying acoustic emission spectrum match very well with experimental results. The second and the third are the more complex cases of the Portevin-Le Chatelier bands and the Luders band. These two cases are dealt with in the context of the Ananthakrishna model since the model predicts the three types of the Portevin-Le Chatelier bands and also Luders-like bands. Our results show that for the type-C bands where the serration amplitude is large, the acoustic emission spectrum consists of well-separated bursts of acoustic emission. At higher strain rates of hopping type-B bands, the burst-type acoustic emission spectrum tends to overlap, forming a nearly continuous background with some sharp acoustic emission bursts. The latter can be identified with the nucleation of new bands. The acoustic emission spectrum associated with the continuously propagating type-A band is continuous. These predictions are consistent with experimental results. More importantly, our study shows that the low-amplitude continuous acoustic emission spectrum seen in both the type-B and type-A band regimes is directly correlated to small-amplitude serrations induced by propagating bands. The acoustic emission spectrum of the Luders-like band matches with recent experiments as well. In all of these cases, acoustic emission signals are burstlike, reflecting the intermittent character of dislocation-mediated plastic flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Instabilities arising in unsteady boundary layers with reverse flow have been investigated experimentally. Experiments are conducted in a piston driven unsteady water tunnel with a shallow angle diffuser placed in the test section. The ratio of temporal (Pi(t)) to spatial (Pi(x)) component of the pressure gradient can be varied by a controlled motion of the piston. In all the experiments, the piston velocity variation with time is trapezoidal consisting of three phases: constant acceleration from rest, constant velocity and constant deceleration to rest. The adverse pressure gradient (and reverse flow) are due to a combination of spatial deceleration of the free stream in the diffuser and temporal deceleration of the free stream caused by the piston deceleration. The instability is usually initiated with the formation of one or more vortices. The onset of reverse flow in the boundary layer, location and time of formation of the first vortex and the subsequent flow evolution are studied for various values of the ratio Pi(x) (Pi(x) + Pi(t)) for the bottom and the top walls. Instability is due to the inflectional velocity profiles of the unsteady boundary layer. The instability is localized and spreads to the other regions at later times. At higher Reynolds numbers growth rate of instability is higher and localized transition to turbulence is observed. Scalings have been proposed for initial vortex formation time and wavelength of the instability vortices. Initial vortex formation time scales with convective time, delta/Delta U, where S is the boundary layer thickness and Delta U is the difference of maximum and minimum velocities in the boundary layer. Non-dimensional vortex formation time based on convective time scale for the bottom and the top walls are found to be 23 and 30 respectively. Wavelength of instability vortices scales with the time averaged boundary layer thickness. (C) 2015 Elsevier Masson SAS. All rights reserved.