160 resultados para Theoretical assumptions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model building studies on poly(hydroxypro1ine) indicate that in addition to the well-known helical structure of form A, a left-handed helical structure with trans peptide units and with h = 2.86 A and n = 2.67 (i.e., 8 residues in 3 turns) is also possible. In this structure which is shown to be in agreement with X-ray data of the form B in the next paper, the y-hydroxyl group of an (i + 1)th Hyp residue is hydrogen bonded to the carbonyl oxygen of an (i - 1)th residue. The possibility of a structure with cis peptide units is ruled out. It is shown that both forms A and B are equally favorable from considerations of intramolecular energies. Since form B is further stabilized by intrachain hydrogen bonds, we believe that this is likely to be the ordered conformation for poly(hydroxypro1ine) in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical calculations of the geminal carbonyl-13C- proton coupling constant, 2J(C′H), in α-amino acids have been carried out using Dirac Vector model and Penney-Dirac bond order formulations. The results indicate that the couplings are dependent on the backbone torsion angle psi (ψ) of the amino acid residues in peptides. The meagre available experimental data seem to support the theoretical findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-Ray structural data, as well as semiempirical and ab initio molecular orbital calculations, reveal no systematic and substantial difference between the C–C bond lengths of cis and trans 1,2-diketones. Additional results on various conformations of 1,2-diimines and 1,2-dithiones follow the same pattern. Therefore, lone-pair repulsions cannot be implicated in the observed lengthening of C–C bonds in isatin and several related molecules. Conjugation in these systems occurs peripherally avoiding the participation of the central C–C bond. Negative hyperconjugative interaction between the oxygen lone pairs and the adjacent C–C σ* orbital is suggested to be the principal reason for the relatively long C–C bond in diketones. This effect is found in both the cis and trans conformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently reported experimental results on the rotation sensitivity of Lau fringes to the spatial coherence of the source have been theoretically analyzed and explained on the basis of coherence theory. A theoretical plot of the rotation angle required for the Lau fringes to vanish is obtained as a function of the coherence length of the illumination used in the Lau experiment. The theoretical results compare well with the experimental observations. The analysis as well as the experiment could form the basis for a simple and easy measurement of the coherence length of the illumination in a plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental charge density distribution in three compounds, 2-chloro-3-quinolinyl methanol, 2-chloro-3-hydroxypyridine, and 2-chloro-3-chloromethyl-8-methylquinoline, has been obtained using high-resolution X-ray diffraction data collected at 100 K based on the aspherical multipole modeling of electron density. These compounds represent type I (cis), type I (trans), and type II geometries, respectively, as defined for short Cl center dot center dot center dot Cl interactions. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from a periodic quantum calculation at the B3LYP/6-31G** level. The topological features derived from the Bader's theory of atoms in molecules (AIM) approach unequivocally suggest that both cis and trans type I geometries show decreased repulsion, whereas type II geometry is attractive based on the nature of polar flattening of the electron density around the Cl atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plane stress solution for the interaction analysis of a framed structure, with a foundation beam, resting on a layered soil has been studied using both theoretical and photoelastic methods. The theoretical analysis has been done by using a combined analytical and finite element method. In this, the analytical solution has been used for the semi-infinite layered medium and finite element method for the framed structure. The experimental investigation has been carried out using two-dimensional photoelasticity in which modelling of the layered semi-infinite plane and a method to obtain contact pressure distribution have been discussed. The theoretical and experimental results in respect of contact pressure distribution between the foundation beam and layered soil medium, the fibre stresses in the foundation beam and framed structure have been compared. These results have also been compared with theoretical results obtained by idealizing the layered semi-infinite plane as (a) a Winkler model and (b) an equivalent homogeneous semi-infinite medium

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, beta(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases. (C) 2011 American Institute of Physics. doi:10.1063/1.3526748]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments have repeatedly observed both thermodynamic and dynamic anomalies in aqueous binary mixtures, surprisingly at low solute concentration. Examples of such binary mixtures include water-DMSO, water-ethanol, water-tertiary butyl alcohol (TBA), and water-dioxane, to name a few. The anomalies have often been attributed to the onset of a structural transition, whose nature, however, has been left rather unclear. Here we study the origin of such anomalies using large scale computer simulations and theoretical analysis in water-DMSO binary mixture. At very low DMSO concentration (below 10%), small aggregates of DMSO are solvated by water through the formation of DMSO-(H2O)(2) moieties. As the concentration is increased beyond 10-12% of DMSO, spanning clusters comprising the same moieties appear in the system. Those clusters are formed and stabilized not only through H-bonding but also through the association of CH3 groups of DMSO. We attribute the experimentally observed anomalies to a continuum percolation-like transition at DMSO concentration X-DMSO approximate to 12-15%. The largest cluster size of CH3-CH3 aggregation clearly indicates the formation of such percolating clusters. As a result, a significant slowing down is observed in the decay of associated rotational auto time correlation functions (of the S = O bond vector of DMSO and O-H bond vector of water). Markedly unusual behavior in the mean square fluctuation of total dipole moment again suggests a structural transition around the same concentration range. Furthermore, we map our findings to an interacting lattice model which substantiates the continuum percolation model as the reason for low concentration anomalies in binary mixtures where the solutes involved have both hydrophilic and hydrophobic moieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of fourteen minor elements (Al, As, B, Bi, C, Ga, Ge, In, N, P, Pb, S, Sb and Sn) on the solubility of oxygen in silicon melt has been estimated using a recently developed theoretical equation, with only fundamental physical parameters such as hard sphere diameter, atomic volume and molar heat of solution at infinite dilution as inputs. The results are expressed in the form of interaction parameters. Although only limited experimental data are available for comparison, the theoretical approach appears to predict the correct sign, but underestimates the magnitude of the interaction between oxygen and alloying elements. The present theoretical approach is useful in making qualitative predications on the effect of minor elements on the solubility of oxygen in silicon melt, when direct measurements are not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin and charge excitation gaps and charge and spin density distributions have been studied in macrocyclic binuclear aza-amido copper (II) complexes employing a model Hamiltonian. The spin gaps depend on the σ-orbital occupancies, and for small gaps, the exchange integral between the σ orbitals of the bridging oxygen atoms, KOO, which is sensitive to geometry, determines the low-lying spin excitations. The singlet—singlet gaps also depend upon the σ-orbital occupancy but are weakly dependent upon KOO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New composition gradient solid electrolytes have been designed for application in high temperature solid-state galvanic sensors and in thermodynamic measurements. The functionally gradient electrolyte consists of a solid solution between two or more ionic conductors with a common ion and gradual variation in composition of the other ionic species. Unequal rates of migration of the ions, caused by the presence of the concentration gradient, may result in the development of space charge, manifesting as diffusion potential. Presented is a theoretical analysis of the EMF of cells incorporating gradient solid electrolytes. An analytical expression is derived for diffusion potential, using the thermodynamics of irreversible processes, for different types of concentration gradients and boundary conditions at the electrode/electrolyte interfaces. The diffusion potential of an isothermal cell incorporating these gradient electrolytes becomes negligible if there is only one mobile ion and the transport numbers of the relatively immobile polyionic species and electrons approach zero. The analysis of the EMF of a nonisothermal cell incorporating a composition gradient solid electrolyte indicates that the cell EMF can be expressed in terms of the thermodynamic parameters at the electrodes and the Seebeck coefficient of the gradient electrolyte under standard conditions when the transport number of one of the ions approaches unity.