104 resultados para Tetrahydrate sodium perborate
Resumo:
L-PGlu-(2-proPyl)-L-His-L-ProNH(2) (NP-647) is a CNS active thyrotropin-releasing hormone (TRH) analog with potential application in various CNS disorders including seizures. In the present study, mechanism of action for protective effect of NP-647 was explored by studying role of NP-647 on epileptiform activity and sodium channels by using patch-clamp methods. Epileptiform activity was induced in subicular pyramidal neurons of hippocampal slice of rat by perfusing 4-aminopyridine (4-AP) containing Mg(+2)-free normal artificial cerebrospinal fluid (nACSF). Increase in mean firing frequency was observed after perfusion of 4-AP and zero Mg(+2) (2.10+/-0.47 Hz) as compared with nACSF (0.12+/-0.08 Hz). A significant decrease in mean firing frequency (0.61+/-0.22 Hz), mean frequency of epileptiform events (0.03+/-0.02 Hz vs. 0.22+/-0.05 Hz of 4-AP+0 Mg), and average number of action potentials in paroxysmal depolarization shift-burst (2.54+/-1.21 Hz vs. 8.16+/-0.88 Hz of 4-AP +0 Mg) was observed. A significant reduction in peak dV/dt (246+/-19 mV ms(-1) vs. 297 18 mV ms-1 of 4-AP+0 Mg) and increase (1.332+/-0.018 ms vs. 1.292+/-0.019 ms of 4-AP+0 Mg) in time required to reach maximum depolarization were observed indicating role of sodium channels. Concentration-dependent depression of sodium current was observed after exposure to dorsal root ganglion neurons to NP-647. NP-647 at different concentrations (1, 3, and 10 mu M) depressed sodium current (15+/-0.5%, 50+/-2.6%, and 75+/-0.7%, respectively). However, NP-647 did not show change in the peak sodium current in CNa18 cells. Results of present study demonstrated potential of NP-647 in the inhibition of epileptiform activity by inhibiting sodium channels indirectly. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Inverse suspension polymerization was carried out to synthesize poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) crosslinked with ethylene glycol dimethacrylate (EGDMA). The equilibrium swelling capacities of the SAPs, determined by swelling them in DI water, were found to vary with the acrylamide (AM) content. The SAPs were used to adsorb four cationic dyes (Acriflavine, Auramine-O, Azure-I and Pyronin-Y). The effect of AM content in the SAPs on the adsorption of the cationic dyes was investigated. Different initial concentrations of Azure-I were used with the same amount of the SAP to explore the effect of initial dye concentration on the adsorption. The effect of the adsorbent amount was investigated by taking different amounts of SAP with a fixed initial concentration of Acriflavine. The kinetics of the dye adsorption was modeled by a first order model and the equilibrium amount of the dye adsorbed, adsorption rate coefficients, removal efficiency and partition coefficients were determined. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Nanoindentation is used to explore the variation of mechanical properties associated with the dehydration process in sodium saccharin dihydrate. Upon indenting using a Berkovich tip, (011) and (101) faces exhibit explicit mechanical anisotropy that is consistent with the underlying crystal structure and intermolecular interactions. For freshly grown crystals, (011) is stiffer than (101) by 14%, while (101) is harder than (011) by 8%. Being a heavily hydrated system, the measured mechanical responses contain information pertinent to the fluidity associated with lattice water. Indentation on (011) with a sharp cube-corner tip induces a fluid flow; this observation is uncommon in molecular crystals. The crystals effloresce over a period of time with the generation of a more compact crystal structure and consequently increasing H and E.
Resumo:
Temperature dependent photoemission studies on lightly doped (x = 0.025) sodium tungsten bronzes, NaxWO3 have been investigated by high-resolution photoemission spectroscopy. The experimental results show evidence for polaron formation at the valence band edge and the photoemission spectra taken in different modes of the electron analyzer suggest that the density of states at the valence band edge gradually moves to other k-points in the Brillouin zone with increasing temperature and explain the dynamics of polarons in the insulating disordered sodium tungsten bronzes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Superabsorbent polymers (SAPs) based on acrylic acid (AA), sodium acrylate (SA), and acrylamide (AM) were synthesized by inverse suspension polymerization using ethylene glycol dimethacrylate as the crosslinking agent. The equilibrium swelling capacities and the rates of swelling of SAPs varied with the AM content and followed first-order kinetics. The photodegradation of SAPs in their equilibrium swollen state was carried out by monitoring their swelling capacity and the residual weight fraction. The SAPs degraded in two stages, wherein the swelling capacity increased to a maximum and then subsequently decreased. Thermogravimetric analysis of the SAPs indicated that the copolymeric superabsorbents had intermediate thermal stability between the homopolymeric superabsorbents. The activation energies of SAPs with 0, 20, and 100 mol % AM content were determined by Kissinger method and were found to be 299, 248, and 147 kJ mol-1, respectively. The ultrasonic degradation of the superabsorbents was carried out in their equilibrium swollen state, and the change in the viscosity with ultrasonication time was used to quantify the degradation. The ultrasonic degradation of AA/SA superabsorbent was also investigated at various ultrasound intensities. The degradation rate coefficients were found to increase with the intensity of ultrasound. The ultrasonic degradation of AA/SA/AM (20% AM) was also carried out, and degradation rate was found to be more than that of the AA/SA superabsorbent. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
This paper reports investigation of Na2O and ZnO modified borovanadate glasses in the highly modified regime of compositions. These glasses have been prepared by microwave route. Ultraviolet (UV) and visible, infrared (IR), Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies have been used to characterize the speciation in the glasses. Together with the variation of properties such as molar volume and glass transition temperatures, spectroscopic data indicate that at high levels of modification, ZnO tends to behave like network former. It is proposed that the observed variation of all the properties can be reasonably well understood with a structural model. The model considers that the modification and speciation in glasses are strongly determined by the hierarchy of group electronegativities. Further, it is proposed that the width of the transitions of glasses obtained under same condition reflects the fragility of the glasses. An empirical expression has been suggested to quantify fragility on the basis of width of the transition regions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Polyaniline-CaTiO3 nanocomposites with their various weight percentages were prepared by chemical oxidative in situ polymerization technique. The prepared composites were characterized by Fourier transform infrared spectroscopy, scanning electronic microscope, and X-ray diffraction. The temperature-dependent dc conductivity of polyaniline-CaTiO3 nanocomposite was studied within the range of 40-200 degrees C and found that 50 wt% shows high conductivity compared to other composites. Humidity sensor properties of polyaniline-CaTiO3 nanocomposite show better sensing properties and exhibit good linearity in sensing response curve, which discuss the implications of distortions and nonstoichiometry on their physical properties. Among all composites, 50 wt% of polyaniline-CaTiO3 nanocomposites show high sensitivity up to similar to 90% and their response-recovery times are 500 and 453 s, respectively.
Resumo:
In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of mu-conotoxin KIIIA, which was predicted originally to have a C1-C9,C2-C15,C4-C16] disulfide pattern based on homology with closely related mu-conotoxins. The two major isomers of synthetic mu-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a C1-C15,C2-C9,C4-C16] disulfide connectivity, while the minor product adopts a C1-C16,C2-C9,C4-C15] connectivity. Both of these peptides were potent blockers of Na(v)1.2 (K-d values of 5 and 230 nM, respectively). The solution structure for mu-KIIIA based on nuclear magnetic resonance data was recalculated with the C1-C15,C2-C9,C4-C16] disulfide pattern; its structure was very similar to the mu-KIIIA structure calculated with the incorrect C1-C9,C2-C15,C4-C16] disulfide pattern, with an alpha-helix spanning residues 7-12. In addition, the major folding isomers of mu-KIIIB, an N-terminally extended isoform of mu-KIIIA, identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as mu-KIIIA, and both blocked Na(v)1.2 (K-d values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic mu-KIIIA and mu-KIIIB folded in vitro is 1-5/2-4/3-6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of mu-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail's repertoire of active peptides.
Resumo:
Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.
Resumo:
A comprehensive study of D-Na center dot center dot center dot A (D = H/F) complexes has been done using advanced ab initio and atoms in molecule (AIM) theoretical analyses. The correlation between electron density at bond critical point and binding energy gives a distinguishing feature for hydrogen bonding, different from the `electrostatic complexes' formed by LiD and NaD. Moreover, the LiD/NaD dimers have both linear and anti-parallel minima, as expected for electrostatic dipole-dipole interactions. The HF dimer has a quasi-linear minimum and the anti-parallel structure is a saddle point. Clearly, characterizing hydrogen bonding as `nothing but electrostatic interaction between two dipoles' is grossly in error.
Resumo:
Among the mu-conotoxins that block vertebrate voltage-gated sodium channels (VGSCs), some have been shown to be potent analgesics following systemic administration in mice. We have determined the solution structure of a new representative of this family, mu-BuIIIB, and established its disulfide connectivities by direct mass spectrometric collision induced dissociation fragmentation of the peptide with disulfides intact The major oxidative folding product adopts a 1-4/2-5/3-6 pattern with the following disulfide bridges: Cys5-Cys17, Cys6-Cys23, and Cys13-Cys24. The solution structure reveals that the unique N-terminal extension in mu-BuIIIB, which is also present in mu-BuIIIA and mu-BuIIIC but absent in other mu-conotoxins, forms part of a short a-helix encompassing Glu3 to Asn8. This helix is packed against the rest of the toxin and stabilized by the Cys5-Cys17 and Cys6-Cys23 disulfide bonds. As such, the side chain of Val1 is located close to the aromatic rings of Trp16 and His20, which are located on the canonical helix that displays several residues found to be essential for VGSC blockade in related mu-conotoxins. Mutations of residues 2 and 3 in the N-terminal extension enhanced the potency of mu-BuIIIB for Na(v)1.3. One analogue, D-Ala2]BuIIIB, showed a 40-fold increase, making it the most potent peptide blocker of this channel characterized to date and thus a useful new tool with which to characterize this channel. On the basis of previous results for related mu-conotoxins, the dramatic effects of mutations at the N-terminus were unanticipated and suggest that further gains in potency might be achieved by additional modifications of this region.
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
The pore of sodium channels contains a selectivity filter made of 4 amino acids, D/E/K/A. In voltage sensitive sodium channel (Nav) channels from jellyfish to human the fourth amino acid is Ala. This Ala, when mutated to Asp, promotes slow inactivation. In some Nav channels of pufferfishes, the Ala is replaced with Gly. We studied the biophysical properties of an Ala-to-Gly substitution (A1529G) in rat Nav1.4 channel expressed in Xenopus oocytes alone or with a beta 1 subunit. The Ala-to-Gly substitution does not affect monovalent cation selectivity and positively shifts the voltage-dependent inactivation curve, although co-expression with a beta 1 subunit eliminates the difference between A1529G and WT. There is almost no difference in channel fast inactivation, but the beta 1 subunit accelerates WT current inactivation significantly more than it does the A1529G channels. The Ala-to-Gly substitution mainly influences the rate of recovery from slow inactivation. Again, the beta 1 subunit is less effective on speeding recovery of A1529G than the WT. We searched Nav channels in numerous databases and noted at least four other independent Ala-to-Gly substitutions in Nav channels in teleost fishes. Thus, the Ala-to-Gly substitution occurs more frequently than previously realized, possibly under selection for alterations of channel gating.