127 resultados para Switching Regolazione Interleaving Rendimento Convertitore
Resumo:
The analysis of electromagnetic transients arising in EHV/UHV power networks gives necessary information about the possible stresses on the different network components, which will determine their proper design, limits of operation as well as their pertinent protection strategies. This paper describes the transient analysis of 765 kV EHV transmission system which is a typical expansion in Indian power grid system. Considering various conditions, switching transient and fault transient studies are carried out. A FORTRAN version of EMTP is developed, to study a practical example, then a comparison with the results available in the literature is made.
Resumo:
A Radio Frequency (RF) based digital data transmission scheme with 8 channel encoder/decoder ICs is proposed for surface electrode switching of a 16-electrode wireless Electrical Impedance Tomography (EIT) system. A RF based wireless digital data transmission module (WDDTM) is developed and the electrode switching of a EIT system is studied by analyzing the boundary data collected and the resistivity images of practical phantoms. An analog multiplexers based electrode switching module (ESM) is developed with analog multiplexers and switched with parallel digital data transmitted by a wireless transmitter/receiver (T-x/R-x) module working with radio frequency technology. Parallel digital bits are generated using NI USB 6251 card working in LabVIEW platform and sent to transmission module to transmit the digital data to the receiver end. The transmitter/receiver module developed is properly interfaced with the personal computer (PC) and practical phantoms through the ESM and USB based DAQ system respectively. It is observed that the digital bits required for multiplexer operation are sequentially generated by the digital output (D/O) ports of the DAQ card. Parallel to serial and serial to parallel conversion of digital data are suitably done by encoder and decoder ICs. Wireless digital data transmission module successfully transmitted and received the parallel data required for switching the current and voltage electrodes wirelessly. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using common ground current injection protocol and the boundary potentials developed at the voltage electrodes are measured. Resistivity images of the practical phantoms are reconstructed from boundary data using EIDORS. Boundary data and the resistivity images reconstructed from the surface potentials are studied to assess the wireless digital data transmission system. Boundary data profiles of the practical phantom with different configurations show that the multiplexers are operating in the required sequence for common ground current injection protocol. The voltage peaks obtained at the proper positions in the boundary data profiles proved the sequential operation of multiplexers and successful wireless transmission of digital bits. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn again indicates a sequential and proper operation of multiplexers as well as the successful wireless transmission of digital bits. Hence the developed RF based wireless digital data transmission module (WDDTM) is found suitable for transmitting digital bits required for electrode switching in wireless EIT data acquisition system. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.
Resumo:
The phenomenon of resistive switching (RS) has been demonstrated in several non-magnetic and some magnetic oxide systems, however the ``magnetic'' aspect of magnetic oxides has not been emphasized especially in terms of low field tunability. In our work, we examined the CoFe2O4/La0.66Sr0.34MnO3 all-magnetic oxide interface system for RS and discovered a very sharp (bipolar) transition at room temperature that can be gated with high sensitivity by low magnetic fields (similar to 0-100 mT). By using a number of characterizations, we show that this is an interface effect, which may open up interesting directions for manipulation of the RS phenomenon. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4707373]
Resumo:
This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.
Resumo:
The synthesis, hydrogelation, and aggregation-induced emission switching of the phenylenedivinylene bis-N-octyl pyridinium salt is described. Hydrogelation occurs as a consequence of pi-stacking, van der Waals, and electrostatic interactions that lead to a high gel melting temperature and significant mechanical properties at a very low weight percentage of the gelator. A morphology transition from fiber-to-coil-to-tube was observed depending on the concentration of the gelator. Variation in the added salt type, salt concentrations, or temperature profoundly influenced the order of aggregation of the gelator molecules in aqueous solution. Formation of a novel chromophore assembly in this way leads to an aggregation-induced switch of the emission colors. The emission color switches from sky blue to white to orange depending upon the extent of aggregation through mere addition of external inorganic salts. Remarkably, the salt effect on the assembly of such cationic phenylenedivinylenes in water follow the behavior predicted from the well-known Hofmeister effects. Mechanistic insights for these aggregation processes were obtained through the counterion exchange studies. The aggregation-induced emission switching that leads to a room-temperature white-light emission from a single chromophore in a single solvent (water) is highly promising for optoelectronic applications.
Resumo:
Surface electrode switching of 16-electrode wireless EIT is studied using a Radio Frequency (RF) based digital data transmission technique operating with 8 channel encoder/decoder ICs. An electrode switching module is developed the analog multiplexers and switched with 8-bit parallel digital data transferred by transmitter/receiver module developed with radio frequency technology. 8-bit parallel digital data collected from the receiver module are converted to 16-bit digital data by using binary adder circuits and then used for switching the electrodes in opposite current injection protocol. 8-bit parallel digital data are generated using NI USB 6251 DAQ card in LabVIEW software and sent to the transmission module which transmits the digital data bits to the receiver end. Receiver module supplies the parallel digital bits to the binary adder circuits and adder circuit outputs are fed to the multiplexers of the electrode switching module for surface electrode switching. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using opposite current injection protocol. The boundary potentials developed at the voltage electrodes are measured and studied to assess the wireless data transmission.
Resumo:
A current-error space phasor based hysteresis controller with nearly constant switching frequency is proposed for a general n-level voltage source inverter fed three-phase induction motor drive. Like voltage-controlled space vector PWM (SVPWM), the proposed controller can precisely detect sub-sector changes and for switching it selects only the nearest switching voltage vectors using the information of the estimated fundamental stator voltages along α and β axes. It provides smooth transition between voltage levels, including operation in over modulation region. Due to adjacent switching amongst the nearest switching vectors forming a triangular sub-sector, in which tip of the fundamental stator voltage vector of the machine lies, switching loss is reduced while keeping the current-error space phasor within the varying parabolic boundary. Appropriate dimension and orientation of this parabolic boundary ensures similar switching frequency spectrum like constant switching frequency SVPWM-based induction motor (IM) drive. Inherent advantages of multi-level inverter and space phasor based current hysteresis controller are retained. The proposed controller is simulated as well as implemented on a 5-level inverter fed 7.5 kW open-end winding IM drive.
Resumo:
A current-error space-vector-based hysteresis current controller for a general n-level voltage-source inverter (VSI)-fed three-phase induction motor (IM) drive is proposed here, with control of the switching frequency variation for the full linear modulation range. The proposed current controller monitors the space-vector-based current error of an n-level VSI-fed IM to keep the current error within a parabolic boundary, using the information of the current triangular sector in which the tip of the reference vector lies. Information of the reference voltage vector is estimated using the measured current-error space vectors, along the alpha- and beta-axes. Appropriate dimension and orientation of this parabolic boundary ensure a switching frequency spectrum similar to that of a constant-switching-frequency voltage-controlled space vector pulsewidth modulation (PWM) (SVPWM)-based IM drive. Like SVPWM for multilevel inverters, the proposed controller selects inverter switching vectors, forming a triangular sector in which the tip of the reference vector stays, for the hysteresis PWM control. The sector in the n-level inverter space vector diagram, in which the tip of the fundamental stator voltage stays, is precisely detected, using the sampled reference space vector estimated from the instantaneous current-error space vectors. The proposed controller retains all the advantages of a conventional hysteresis controller such as fast current control, with smooth transition to the overmodulation region. The proposed controller is implemented on a five-level VSI-fed 7.5-kW IM drive.
Resumo:
The paper identified and characterized a special multi-degree of freedom toggle behavior, called double toggle, observed in a typical MCCB switching mechanism. For an idealized system, the condition of toggle sequence is derived geometrically. The existing tools available in a multi-body dynamics package are used for exploring the dynamic behavior of such systems parametrically. The double toggle mechanism is found to make the system insensitive to the operator's behavior; however, the system is vulnerable under extreme usage. The linkage kinematics and stopper locations are found to have dominant role on the behavior of the system. It is revealed that the operating time is immune to the inertial property of the input link and sensitive to that of the output link. Novel designs exploiting this observation, in terms of spring and toggle placements, to enhance switching performance have also been reported in the paper. Detailed study revealed that strategic placement of the spring helps in selective alteration of system performance. Thus, the study establishes the critical importance of the kinematic design of MCCB over the dynamic parameters. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Identical parallel-connected converters with unequal load sharing have unequal terminal voltages. The difference in terminal voltages is more pronounced in case of back-to-back connected converters, operated in power-circulation mode for the purpose of endurance tests. In this paper, a synchronous reference frame based analysis is presented to estimate the grid current distortion in interleaved, grid-connected converters with unequal terminal voltages. Influence of carrier interleaving angle on rms grid current ripple is studied theoretically as well as experimentally. Optimum interleaving angle to minimize the rms grid current ripple is investigated for different applications of parallel converters. The applications include unity power factor rectifiers, inverters for renewable energy sources, reactive power compensators, and circulating-power test set-up used for thermal testing of high-power converters. Optimum interleaving angle is shown to be a strong function of the average of the modulation indices of the two converters, irrespective of the application. The findings are verified experimentally on two parallel-connected converters, circulating reactive power of up to 150 kVA between them.
Resumo:
Electrical switching studies on amorphous Ge17Te83−xSnx thin films (1 ≤ x ≤ 4) has been done to find their suitability for Phase Change Memory application; Bulk ingots in glassy form are prepared using conventional melt quenching technique and the thin films are coated using flash evaporation technique. Samples are found to exhibit memory type of electrical switching behavior. The switching voltages of Ge17Te83−xSnx thin films have been found to decrease with increase in Sn concentration. The comparatively lower switching voltages of Ge17Te83−xSnx samples, make them suitable candidates for phase change memory applications.
Resumo:
Device switching times and switching energy losses are required over a wide range of practical working conditions for successful design of insulated gate bipolar transistor (IGBT) based power converters. This paper presents a cost-effective experimental setup using a co-axial current transformer for measurement of IGBT switching characteristics and switching energy loss. Measurements are carried out on a 50A, 1200V IGBT (SKM50GB123D) for different values of gate resistance, device current and junction temperature. These measurements augment the technical data available in the device datasheet.Short circuit transients are also investigated experimentally under hard switched fault as well as fault under load conditions.
Resumo:
In traction application, inverters need to have high reliability on account of wide variation in operating conditions, extreme ambient conditions, thermal cycling and varying DC link voltage. Hence it is important to have a good knowledge of switching characteristics of the devices used. The focus of this paper is to investigate and compare switching characteristics and losses of IGBT modules for traction application. Dependence of device transition times and switching energy losses on dc link voltage, device current and operating temperature is studied experimentally.
Resumo:
Reduction of switching surge over voltages allows an economic design of UHV transmission system with reduced insulation. The various means of switching surge over voltage control with pre-insertion resistors/closing resistors, shunt re-actors and controlled switching are illustrated. The switching surge over voltages during the energization of series compensated line are compared with uncompensated line. An Electromagnetic transients program has been developed for studying the effect of various means of control of switching transients during 765kV UHV transmission line energization. This paper presents the studies carried out on switching surges control in 765kV UHV transmission line energization.