103 resultados para Sustainable Transport
Resumo:
Double perovskite oxides Sr2FeMoO6 have attracted a great interest for their peculiar magneto-transport properties, and, ill particular, for the large values of low-field magneto-resistance (MR) which remains elevated even at room temperature, thanks to their high Curie temperature (T-c > 400 K). These properties are strongly influenced by chemical cation disorder, that is by the relative arrangement of Fe and Mo on their sublattices: the regular alternation of Fe and Mo enhances the M R and saturation magnetization. On the contrary the disorder generally depresses the magnetization and worsen the MR response. In this work the X-ray absorption fine structure (XAFS) technique has been employed in order to probe the cation order from a local point of view. XAFS spectra were collected at the Fe and Mo K edges on Sr2FeMoO6 samples with different degree of long-range chemical order. The XAFS results prove that a high degree of short-range cation order is preserved, despite the different long-range order: the Fe-Mo correlations are always preferred over the Fe-Fe and Mo-Mo ones in the perfectly ordered as well as in highly disordered samples.
Resumo:
We report transport and magnetic properties of a different class of highly conducting polyaniline, doped with boron trihalides BX3 (X=F, Cl, and Br). In order to understand the transport mechanism we analyze the temperature dependence of resistivity of a large number of samples, made by pelletizing doped polyaniline powder and by doping films of polyaniline. We find that the charge transport in this class of conducting polyaniline is driven by the charging-energy limited transport of charge carriers, in contrast to the quasi-one-dimensional variable range hopping conduction prevalent in conventional proton-doped polyaniline samples. Magnetic susceptibility provides further insight into the unusually high intrinsic conductivity behavior.
Resumo:
Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. This paper addresses these challenges. Historically, the responsibility for greenhouse gas emissions' increase lies largely with the industrialized world, though the developing countries are likely to be the source of an increasing proportion of future emissions. The projected climate change under various scenarios is likely to have implications on food production, water supply, coastal settlements, forest ecosystems, health, energy security, etc. The adaptive capacity of communities likely to be impacted by climate change is low in developing countries. The efforts made by the UNFCCC and the Kyoto Protocol provisions are clearly inadequate to address the climate change challenge. The most effective way to address climate change is to adopt a sustainable development pathway by shifting to environmentally sustainable technologies and promotion of energy efficiency, renewable energy, forest conservation, reforestation, water conservation, etc. The issue of highest importance to developing countries is reducing the vulnerability of their natural and socio-economic systems to the projected climate change. India and other developing countries will face the challenge of promoting mitigation and adaptation strategies, bearing the cost of such an effort, and its implications for economic development.
Resumo:
Annealing dependence of the lattice parameter, resistivity, magnetoresistance and thermopower have been studied on Nd0.87Sr0.33MnO3 thin films deposited on LaAlO3 and alumina substrates by pulsed laser ablation. Upon annealing at 800 degrees C and 1000 degrees C the lattice constant of the LaAlO3 film tends toward that of the bulk target due to reduction in oxygen vacancies. This results in a metal-insulator transition at temperatures which increase with progressive annealing along with a decrease in the observed low temperature MR. Using a magnon scattering model we estimate the e(g) bandwidth of the film annealed at 1000 degrees C and show that the magnon contribution to the resistivity is suppressed in a highly oxygen deficient film and gains prominence only upon subsequent annealing. We also show that upon annealing, the polaron concentration and the spin cluster size increases in the paramagnetic phase, using an adiabatic polaron hopping model which takes into account an exchange dependent activation energy above the resistivity peak.
Resumo:
The objective of the present paper is to select the best compromise irrigation planning strategy for the case study of Jayakwadi irrigation project, Maharashtra, India. Four-phase methodology is employed. In phase 1, separate linear programming (LP) models are formulated for the three objectives, namely. net economic benefits, agricultural production and labour employment. In phase 2, nondominated (compromise) irrigation planning strategies are generated using the constraint method of multiobjective optimisation. In phase 3, Kohonen neural networks (KNN) based classification algorithm is employed to sort nondominated irrigation planning strategies into smaller groups. In phase 4, multicriterion analysis (MCA) technique, namely, Compromise Programming is applied to rank strategies obtained from phase 3. It is concluded that the above integrated methodology is effective for modeling multiobjective irrigation planning problems and the present approach can be extended to situations where number of irrigation planning strategies are even large in number. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The d.c. conductivity of phosphomolybdate and phosphotungstate glasses is discussed. The conductivity of these glasses is due to the hopping of electrons between two valence states (Mo5+ to Mo6+ or W5+ W6+). In some of the glasses, the activation energy itself is found to be a function of temperature. This appears to be due to thermally activated and variable-range hopping mechanisms operating in different temperature regimes. The relation between conductivity and the [M5+]/[Mtotal](M ≡ Mo, W) ratio does not show any systematic variation. This anomaly can be understood using the structural models of these glasses. In contrast, Mott's theory and the Triberis and Friedman model have been used to obtain conductivity parameters such as the percolation distance Rij and 2agrRij (agr is the tunnelling probability). The conductivity parameter 2agrRij is quite useful to resolve the controversy regarding the tunnelling term exp(2agrRij) existing in the literature. For low values of 2agrRij, it is shown that the exp (2agrRij) term is very significant.
Resumo:
The paper aims to assess the potential of decentralized bioenergy technologies in meeting rural energy needs and reducing carbon dioxide (CO2) emissions. Decentralized energy planning is carried out for the year 2005 and 2020. Decentralized energy planning model using goal programming technique is applied for different decentralized scales (village to a district) for obtaining the optimal mix of energy resources and technologies. Results show that it is possible to meet the energy requirements of all the services that are necessary to promote development and improve the quality of life in rural areas from village to district scale, by utilizing the locally available energy resources such as cattle dung, leaf litter and woody biomass feedstock from bioenergy plantation on wastelands. The decentralized energy planning model shows that biomass feedstock required at village to district level can even be obtained from biomass conserved by shifting to biogas for cooking. Under sustainable development scenario, the decentralized energy planning model shows that there is negligible emission of CO2, oxide of Sulphur (SOx) and oxide of nitrogen (NOx), even while meeting all the energy needs.
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is transported to the kitchen. The thermal energy source is used to supplement the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. Solar energy is transferred to the kitchen by means of a circulating fluid. Energy collected from sun is maximized by changing the flow rate dynamically. This paper proposes a concept of maximum power point tracking (MPPT) for the solar thermal collector. The diameter of the pipe is selected to optimize the overall energy transfer. Design and sizing of different components of the system are explained. Concept of MPPT is validated with simulation and experimental results. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have studied charge transport in nanometer scale films of polypyrrole (PPy) that were grown electrochemically onto discontinuous ultrathin films of gold. The gold films consisted of 100 nm size islands, separated from each other by nanometer-size gaps. The thickness of PPy can be varied from 30 to 200 nm. The I-V characteristics of these hybrid PPy-Au nanostructures show strong non-linearity at low temperatures, and in particular for the more insulating samples. The hopping transport is further verified from the log / versus V-1/4 plots. Furthermore, the I-V data follow an empirical relation dlog//dV(1/4) similar to T-1/2.
Resumo:
Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to a low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.
Resumo:
The small signal ac response is measured across the source-drain terminals of organic field-effect transistors (OFET) under dc bias to obtain the equivalent circuit parameters of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) and poly(3-hexyl thiophene) (P3HT) based devices. The numerically simulated response based on these parameters is in good agreement with the experimental data for PBTTT-FET except at low frequencies, while the P3HT-FET data show significant deviations. This indicates that the interface with the metal electrode is rather complex for the latter, involving additional circuit elements arising from contact impedance or charge injection processes. Such an investigation can help in identifying the operational bottlenecks and to improve the performance of OFETs.
Resumo:
The present work explores the temperature dependent transport behavior of n-InN nanodot/p-Si(100) heterojunction diodes. InN nanodot (ND) structures were grown on a 20 nm InN buffer layer on p-Si(100) substrates. These dots were found to be single crystalline and grown along 001] direction. The junction between these two materials exhibits a strong rectifying behavior at low temperatures. The average barrier height (BH) was determined to be 0.7 eV from current-voltage-temperature, capacitance-voltage, and flat band considerations. The band offsets derived from built-in potential were found to be Delta E-C=1.8 eV and Delta E-V=1.3 eV and are in close agreement with Anderson's model. (C) 2010 American Institute of Physics. doi:10.1063/1.3517489]